
ce

 3G1
An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan Rick Kazman1

Software Engineering Analysis Lab. Department of Computer Scien
Nortel University of Waterloo

Ottawa, Ontario, Canada K1Y 4H7 Waterloo, Ontario, Canada N2L
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca
t

w

p
o

n
e

e

s
t

i
v

le

.
v

f
u

le-
ti-
al
ta-

hi-
oft-
ilt
e-
-
,
d
le,

ma-
s.
l
ty
s
d

ibe
 cap-
re
be
chi-
set
c-

em
 a

ly-
n
ent
re-
n,
Abstract

Software evolution and reuse is more likely
receive higher payoff if high-level artifacts—suc
as architectures and designs—can be reused and
guide low-level component reuse. In practice, ho
ever, high-level artifacts are often not appropriate
captured. This paper presents an approach to ca
ing and assessing software architectures for ev
tion and reuse. The approach consists of
framework for modeling various types of releva
information and a set of architectural views for r
engineering, analyzing, and comparing softwa
architectures. We have applied this approach
large-scale telecommunications systems, where
approach is useful to reveal areas for improvem
and the potential for reuse.

Keywords: Software architectures, product line
analysis, software evolution, software reusabili
scenarios

1. Introduction

Software evolution and reuse are two critical top
in industry, because of the huge expense invol
and because of global competition. However, so
ware systems are becoming increasingly comp
further complicating the already difficult problem o
evolving or reusing software assets and products
systematically support the process for the e
growing complexity of software, higher levels o
abstraction are needed. Kruchten [9] noted that “
a software reuse technique to be effective, it m
reduce the cognitive distance between the initial
- 1

1. Kazman’s current address: Software Engineering
Institute, Carnegie Mellon Univ., Pittsburgh, PA,
15213. E-mail: kazman@sei.cmu.edu

s-
or
the
o
h
 can
-

ly
tur-
lu-
a
t
-

re
to

the
nt

,
y,

cs
ed
ft-
x,
f
 To
er
f
or
st

concept of a system and its final executable imp
mentation” (p. 136). Software architectures are cri
cal artifacts in bridging the gap between the initi
concept of a system and the system’s implemen
tion; its low-level software components.

This paper presents a framework and a set of arc
tectural views that were developed to assess s
ware architectures for evolution and reuse bu
upon a scenario-based approach [7]. This fram
work is used to model different types of informa
tion, namely, stakeholder information [2,4]
architecture information, quality information, an
scenarios. Stakeholders can include, for examp
designers, managers, and end-users. The infor
tion for stakeholders describes their objective
Architecture information deals with the critica
design principles or architectural objectives. Quali
information refers to the non-functional attribute
such as performance, modifiability, availability, an
integrability. Scenarios are narratives that descr
use cases of a system. Scenarios can be used to
ture the system’s functionality. Scenarios that a
not directly supported by the current system can
used to detect possible flaws or to assess the ar
tecture’s support for potential enhancements. A
of scenarios is derived from the stakeholder obje
tives, architectural objectives, and desired syst
quality attributes or objectives. Section 2 will give
more detailed discussion on this topic.

Objectives provide boundaries and drive the ana
sis. Architectural views are important for evolutio
and reuse, because various views provide differ
perspectives, which are useful in understanding,
engineering, and analyzing systems. In additio
these architectural views support analysis of sy
tems developed using different paradigms. F
example, one application that we have made of
 -

ws:

s
S

r
s

y

t

n

n
us
lity,
his
hi-

ive
g

e
the
and
he

een:
es,
t is
d
east
er.

tion
ted

tive
 by
rib-
ich
ill
el-
oft-
e

views is to compare systems developed using fu
tional decomposition and object-oriented design
the same problem area.

The main objective of the approach was to
assess an existing architecture for project
evolution or reuse in a future project in the
same problem domain or product line. The
work reflects empirical experience gathered
by an external review team to evaluate the
sensitivity of an architecture to changes in
key customer value parameters. An example
of a customer value is scalability. For
instance: what is the sensitivity of an archi-
tecture if the system is to be modified so that
it supports fifteen features, instead of the pre-
vious ten, and at the same time the system is
to be scaled from processing fifty calls to
eighty calls per minute?

The remainder of this paper is organized as follo
Section 2 demonstrates the framework for analy
Section 3 describes the context of architectu
views and various architectural views adopted
the analysis of software architectures. Example
the views are also demonstrated in this section.
tion 4 highlights some example scenarios and pa
analysis results. Section 5 presents some impo
lessons learned from applying the approach to
eral telecommunications systems. Finally, Sectio
gives our concluding remarks.

2. Framework for Information
Gathering and Analysis

To ensure that the software architecture anal
process is organized and scientific (and hen
repeatable), a framework for architecture inform
tion gathering and analysis was formulated,
described in Figure 1. The activities described in
framework are performed iteratively instead of in
strict sequential manner.

Gathering. This phase focuses on becoming aw
of the available and required information to do
analysis, and then to collect and compile it. C
rently four categories of information are bei
addressed: stakeholder, architecture, quality,
scenarios or use cases. In the future, the informa
categories may be extended, to include for exam
competitive analysis.

G

M

A

E

- 2

l

sis.
ral
for
 of
ec-

rtial
tant
ev-
n 6

sis
ce,
a-
as
the
 a

are
he
ur-
g

and
tion
ple,

Modeling. Once it is gathered, the information is the
aligned across information categories. The foc
here is on mapping stakeholder, architecture, qua
and scenario information into usable artifacts. T
information is used to direct the capture of the arc
tecture (if it is
not already recorded in a usable form) and to dr
the analysis. It is also a critical vehicle in providin
feedback in the latter phases.

Modeling is a critical phase, since if it is not don
correctly, it can mislead and skew the rest of
analysis. In the modeling phase both the breadth
depth of the analysis are taken into account. T
breadth aspect describes the relationships betw
stakeholders objectives, architectural objectiv
quality attributes, and scenarios. For example, i
useful to form a matrix of quality attributes an
stakeholders, to ensure that each attribute is at l
considered from the perspective of each stakehold

The depth aspect deals with the levels of abstrac
at which the stakeholder objectives are represen
(and hence analyzed). A single stakeholder objec
or an architectural objective could be represented
several quality attributes or scenarios, each desc
ing one aspect of the objective. The depth at wh
various types of information are represented w
affect the accuracy (and cost) of the analysis. Mod
ing of the depth aspect is supported by adopting s
ware QFD (quality function deployment) [2], wher
relational matrices are used to prioritize high-leve
nc-
 in

FIGURE 1.
Framework for Architecture Information

Gathering and Analysis

Stakeholder
Information

Architecture
Information

 Quality
Information Scenarios

Stakeholder
 Entity

Architecture
 Entity

Quality
 Entity

Scenarios

Architectural Analysis and Artifacts

Architectural Drivers

athering

odeling

nalyzing

valuating
 -

i

r

e

e

d
-
h
a

d

o

e
e
i
h

a
n
u
c
o

 4.
r-
s.
ll.

m
rs

em.
 of
m
s
the
a
of a

at
e

 a
w
fly

l
is

-

,
n
n

objectives and the results are fed into correspond
objectives at the next level.

Analyzing. This phase focuses on specific softwa
architecture analysis and generation of artifacts
do the analysis. Examples of artifacts includ
domain models (which help in comparing compe
ing architectures within the same functional ar
[6]); relevant architectural views; scenarios; env
ronmental assumptions and constraints; and tra
off rationale. SAAM (Software Architecture Analy
sis Method) [7] is adopted and extended for t
analysis. Explicit scenarios are mapped onto
architecture for analysis of quality attributes.

Evaluating. This phase focuses on drivers for arch
tectural development. In this phase recommen
tions are made, “hot spots” in the architecture (are
of high predicted complexity, large numbers
changes, performance bottlenecks, etc.) are loca
and strategies for their mitigation are enumerat
common reference models (independent of archit
ture capture) are identified. It is important that th
phase ties back to the stakeholders’ values, as t
are the drivers of the analysis in the first place.

2.1 Example of Modeling of Objectives

Having described the framework, we now give
example in the domain of telecommunicatio
switching software. In this example we show a co
ple of stakeholder objectives, architectural obje
tives, and quality objectives, and the alignment
these three types of objective in Table 1.

ac
c
ts
A

s
w
al
 or
ia-

s.
ort

g

ar-
he
e

ach
or
le
n-
A set of scenarios are then developed based on
stakeholder and architectural objectives. E
objective may consist of a set of scenarios or s
nario classes. Each scenario class in turn consis
various number of scenarios or sub-classes.
- 3
ng

e
to
:

t-
a
i-
e-

e
n

i-
a-
as
f
ted
d,
c-
s
ey

n

-
-
f

the
h
e-
 of
n

example of scenarios will be presented in Section
The objectives also are important factors in dete
mining when to stop generating more scenario
This concept will be addressed in Section 4 as we

3. Architectural Views for Evolution and
Reusability Analysis

The development of a complex software syste
involves various stakeholders. Diverse stakeholde
have different needs and perspectives of the syst
Each perspective represents a partial description
a system. A complete description of a syste
requires multiple viewpoints. In addition, variou
viewpoints may be needed at various stages in
life cycle. An architectural view, in this context, is
perspective that satisfies the expressed needs
stakeholder.

SEAL has adopted various architectural views th
are critical for software architecture analysis. Th
set of views includes: a static view, a map view,
dynamic view, and a resource view [11]. Each vie
and some commonly used methods are brie
described below.

• Static view. The static view shows the overal
topology. The methods that can be used for th
view include logical diagram, structure dia
gram, object diagram, and module diagram.

• Map view. The map view identifies the style
design violations, and the mapping betwee
components and functions or features. A
example will be presented in the next section.

• Dynamic view. The dynamic view addresse
the behavioral aspects of a system. This vie
can be supported by functional or operation
diagram, causal diagram, messaging diagram
message sequence chart, object interaction d
gram, state machine, and Petri net.

• Resource view. The resource view deals with
the utilization aspect of the system resource
Various techniques have been used in supp
of this view, including the identification of the
mapping of software onto hardware, queuin
model, simulation and performance.

The development of the views does not have be c
ried out in a strict sequential manner. Rather, t
process is iterative in nature. Further, not all th
views may be needed for each evaluation and e
view is not constrained by a particular method
notation. Selection of appropriate views and suitab
methods depend on the specific application enviro
ment and stakeholder values.
Table 1: Stakeholder-Architectural-Quality
Objectives: An Example

Stakeholder
Objectives Architectural Objectives

Quality
Attributes

Allow interworking
with other products
and third.
parties

Expose functionality
which provides the
implementation of stan-
dardized third party
application program-
ming interfaces.

Reliability
Modifiability
Portability

Allow independent
development and
incremental deliv-
ery of new features.

Decouple functionalities
and use of virtual inter-
faces.

Reliability
Modifiability
Integrability
-

ie
th
ia
e

i
o
r
T

re
le-

em
o, a
h a
Figure 2 demonstrates a real usage of these v
for a project. The structural view corresponds to
static view. The functional flow and the causal d
gram belong to the dynamic view. The map vi
consists of three items as just described. T
resource view was not incorporated for this exerc
primarily because the main objective focused
evolution and reuse perspective, and a sepa
team was working on the performance issues.
views and their relationships are described next.
in
s

th
ll
’

d

n
em

n
ts)
l
a
n

all.
ll

g
 to
a
rall
d
6]
on
nd

T ts
a of
c or
i ro-
c a
c arly
(-
i al
a

M
T ts
p is,
Scenarios. In this study, scenarios are the ma
driver for the capture of other architectural view
and for the analysis of an architecture. To begin
analysis process, a few scenarios are typica
selected to identify and understand the system
critical functionality.

Functional Flow. The functional (sometimes calle
operational) flow, in this context, refers to the
sequence of functions that are identified based o
set of scenarios. This view reveals how the syst
works to realize particular scenarios.

Most architectural representations emphasize o
static entities: the system’s “boxes” (componen
and “links” (connectors). A high-level functiona
flow view aids understanding by showing the critic
system functions and the processing of these fu
tions: anoperational view of the system. This view
- 4
ws
e
-

w
he
se
n
ate
he

is simple but useful. In our experience it is par-
ticularly useful for an object-oriented system
where frequently only the modelled real-world
entities are described rather than showing how
the system actually functions.

To return to our telecommunications example, the
are large number of features in an advanced te
communications system. Understanding the syst
as a whole is an enormous and daunting task. S
typical scenario for beginning to understand suc
system would be to model a normal telephone c
A simplified functional flow for a normal phone ca
in a call processing system is shown in Figure 3.
 -
e
y
s

 a

ly

l
c-

Structural View. Existing legacy systems
usually do not have appropriate pre-existin
architectural representations. Consequently,
analyze a software architecture,
representation is needed that shows the ove
system topology. This view integrates an
extends two methods presented in [5] and [
to address the classification and generalizati
of a system’s components and functions, a
the connections between components.

he classification and generalization of componen
nd connections also facilitates the estimation
ost or effort required for changes to be made. F
nstance, the cost for a change to be made to a p
essing unit normally would be higher than
hange to be made to a data repository. Such e
andintentionally crude) estimates help in determin
ng where to place more effort in an architectur
nalysis.

apping between Functions and Components.
he mapping between functions and componen
rovides a view that supports traceability analys
FIGURE 2. An Example of the
Usage of Architectural Views

Functional

 Causal Mapping of
 functionality
 & component

Identification
 of design

Structural

Functionality and
non-functional aspects

Process of

critical

functions

Static relationships Architecture

Components
 & links

ExplicitDynamic
between functions
and components

 relationships
between componentsfeatures and

Scenarios

diagram

and systems behaviors

 violations

Identification
 of styles

 flow

consistency
violations &
rationales

view
FIGURE 3. Functional View for a
Hypothetical System

 provide
 prompt

 create
 process

 collect
 digit

analyze
 digit

 connect
 call

handle
 answer

to
e

t
t
s
s
4

-

s

especially if there is any modification to be made
the system. Two different representations are us
for the mapping. Table 2 shows the mapping of th
system’s main functions or features to componen
whereas Table 3 demonstrates an example of
mapping of components to functions or feature
The components involved are tied back to tho
shown in the structural view as shown in Figure
The table helps locate all components involved for
particular function. The book-keeping effort in cre
ating and maintaining such views, and the link
between them, is crucial to supporting analysi
Humans can not be expected to keep all the deta
in their heads, all the time.
Blackboard

Service Handler

 Control

Translation

Service Initiator

Service

Service
Supplier

Digit Analyzer

Connection

Selector Route
Selector

Account
Information

Service
Source

Process

Computation

Active Data Repository

Logical Grouping

Control Flow

Data Flow

Synchronization

Passive Data Repository

Dial
Plan

Resource
Handler

Update
Account

Billing
Handler

Line
Interface

Service
Events

Service
Plan

Service
Base

Service
Directory

Digit
Collector

Physical
Connection

Digit
Translator

FIGURE 4. Structural View for a Hypothetical Call Processing System
- 5 -
d
e
s,
he
.
e
.
a

s
.
ils

Table 2: Mapping of Functions to
Components: An Example

Function Components Involved

Digit
Collection

Dial Plan, Line Interface, Service Handler,
Service Initiator

Call
Connection

Service Handler, Line Interface, Billing
Handler

Answer
Handling

Service Handler, Line Interface, Connection

n

e
e
u

be

he
sis

y
b-
d
ns
the
e-
n
on

e:
ts,
.
r
g
-

e
ps
ns.
Table 3 shows the mapping of components to fu
tions for a particular scenario. The mapping su
ports the identification of the functions that
component contributes. The functions identified f
the mapping do not have to be specific to a syst
In other words, these functions could also be gen
to a application area such as a set of reference f
tions for the purpose of comparing different sy
tems. When sets of functions are broadly agre
upon and re-used, we have a reference model.

The tables, though conceptually simple, are use
in demonstrating different aspects of functions a
components. The concept is similar to spreadsh
software where diverse representations can
- 6
c-
p-
a
or
m.
ric
nc-
s-
ed

ful
nd
eet

quickly generated based on a user’s needs. T
tables can also be used as a quick-and-dirty analy
of functional cohesion and coupling. If a function
involves too many components, this function ma
need to be decomposed further into several su
functions. In addition, the information could be use
to cluster components based on the cooperatio
and dependencies of components. For instance,
components Service Handler and Line Interface pr
sented in Table 3 show higher functional cohesio
as both components are related to a set of comm
functions.

Causal Diagram. Architectural representations
most commonly describe static features, things lik
components, the relationship between componen
high-level functionality, and allocation to hardware
Thebehavioral aspect of the system is important fo
high-level understanding, communication amon
stakeholders, architecture evolution, and re
engineering. This view also supports th
development of an accurate static view and hel
validate the consistency of the other representatio
Table 3: Mapping of Components to
Functions: An Example

Component Functions Involved

Dial Plan Digit Collection

Service
Handler

Digit Collection, Call Connection,
Answer Handling

Line Interface Digit Collection, Call Connection,
Answer Handling
FIGURE 5. Dynamic View: An Illustration of “Create Process” for the
Hypothetical Call Processing System

O.S.

Interrupt handler
sets the default-
receiver to

Receiver
component sends
original message
to Object1

Object2
creates
Object3

Object1 initiates

to Object5
Object5 sends
the event to
Object2 Object2 sends

 a command
 to Object5

Object5
creates
Object7 Object5

creates
Object6

Object5 sends
a reference

Object5 sends
a reference

Object1
creates
Object2

Object3
creates
Object4

an event
Receiver

to Object6 so
that Object6
points to Object7

to Object1,
so that Object1
points to Object6

Function 2

Function 3
 -

h

p

(

e

y
b

d
l
n
n
e
i

r
n
r
T

o
o
,
s
a

n-
for
ro-
ain,
ky
ms
le
y
y.
r-

ing
 or
cy
c-
-
d
he
an
Various methods could be used to model the be
ioral aspect of a system. Examples include s
machines, message sequence charts, and Petri
A generic causal representation is presented in
ure 5 as an illustration [10]. The tail of an arro
reveals the cause, while the head of an arrow de
the effect. For each function in the functional flo
there is a corresponding causal diagram to revea
behavioral aspect. Figure 5 is an example of “cre
process” demonstrated in the functional flow
shown in Figure 3.)

The behavioral aspect is important to understand
system before reuse occurs. In addition, the dyna
view also supports maintainability as a syst
evolves. For instance, if modifications are made
static architectural representations may stay
same, but some of the system’s behaviors ma
modified. The modification of behaviors should
but typically can not be, explicitly represented
static architectural views. Another example is tha
personnel changes or the architect leaves, there
be different interpretations for the static view
other designers or new employees.

Identification of Architectural Styles. An architec-
ture can be classified into more than one style an
architecture allows coexistence of multiple sty
[5,8]. The primary purposes of the style or patter
to impose an overall structural interpretation o
software system or subsystem for consistency ch
ing, and to support human to human commun
tions of the software.

For the example shown in Figure 4, the behavio
the architecture is similar to a blackboard [3,5], si
the system has a centralized control, called a se
handler, to coordinate a group of components.
identification of an architectural style help focus
critical features such as the control mechanism
style, the communication mechanism between c
ponents, and the integrability of new component
the modifiability of existing components. The
important features for the blackboard model
identified for more detailed analyses as listed
Table 4.
- 7

ns.
m

en-
o-
 in
ir-
 an
es
 is
 a
ck-

ca-

 of
ce
vice
he

on
f a
m-
 or
e
re
in

In addition, the analysis can support the decisio
making process in choosing an appropriate style
the target domain or trade-off analysis. The app
priate style can then be reused for the target dom
even if the architecture itself is evaluated to be ris
to be directly reused for the target. For large syste
where multiple styles may exist, analysis of sty
interoperability is important. Style interoperabilit
is directly related to system integritymaintainabilit
It is important to identify and analyze how one pa
ticular style communicates with other styles [1].

Identification of Design Violations. This view
deals with the components or links that are miss
or are not represented properly, and the control
communication mechanisms that violate the poli
of the identified architectural style. The archite
tural style may only reveal an “idealized” or “as
intended” software architecture initially develope
by a group of software designers. This view, on t
other hand, recovers the “as-built” aspect of
architecture supported by the causal representatio
For instance, the blackboard’s control mechanis
requires a single point of contact between the c
tral control unit and the other cooperative comp
nents, but the architecture that follows the style,
fact, has multiple points of contact under certain c
av-
tate
 nets.
Fig-
w
icts

w,
l the
ate
as

 the
mic
m

the
the
 be
e,

by
t if
may
by

Table 1: Features to Focus on for the
Analysis of the Blackboard Model

Control/
Registration
mechanism

• When the blackboard wants to send a
message to some units, does it
broadcast the message to all the units
or simply send the message to the
registered units?

• Does the model support independent
control or broadcast control?

• Is the control single-threaded or multi-
threaded?

• Is the message control, data, or both?

Communicatio
n mechanism

• Is there a specific point of contact or
multiple points of contact between the
blackboard and the computational
units?

Violations • Are there any links that violate the
control or communication policy?

Integrability
and
modifiability

• If new components are added to the
system, will they be integrated into the
blackboard the same way as existing
components?
 -

o
u

a

c

e

io

e

i
j
n
o

d
p
v

y
m

n
o
t
s
b

e

s

i

t
i

d
in
cal

 to

e
m-

w
 ser-
4.
to

ic
s-

ts
tion
e
ce
for
r-
ted.

of
re-
be
te-

on,
b-
d
ios

 to
is
m-
er
al
 for

ure
lder
el-
his
e

us
circumstances.

Some reasons for the violations could be legacy s
tems, modifications for performance, understan
ability, and discrepancies in the levels
abstraction. The violations must be explicitly doc
mented to reduce potential problems caused
ambiguity or inconsistency. The documentation c
also support system maintainability. Architectur
violations are as important as normal architectu
features and must be identified before reuse oc
to reduce unnecessary maintenance effort.

4. Examples of Scenarios and Analyses

To make a concrete evaluation for the architectur
number of explicit scenarios are developed based
stakeholder and architectural objectives. Elicitat
questions are prepared for each objective and
used in interviewing domain subject experts. Th
interviews are used to better understand systems
to develop scenarios for analysis.

Each objective may consist of a set of scenar
Moreover, the scenarios developed for each ob
tive could be categorized for complex applicatio
creating a reusable checklist of architectural c
cerns. In telecommunications systems, for instan
interactions of complex services or features nee
be validated. Those feature interactions are grou
into different classes to have better scenario co
age and to facilitate evaluations.

In addition to the scenarios developed directly fro
objectives, a group of scenarios for basic uses of
system may need to be generated. Often, anal
will focus on potential future changes to a syste
Basic needs are thus usually neglected. Basic ne
are not and product differentiators, yet one can
have a product without the basic functionality. F
example, a basic call service must exist no ma
how complex the communications may be. Ba
needs are thus critical for architectural analysis,
often are not explicitly expressed by stakeholders

For each scenario, the effect on the architectur
identified. Typically, there is either no effect (n
change to the architecture required) since the
nario is directly supported by the architecture,
changes in the architecture are required to sat
the scenario. In addition, the effort required to ma
the necessary changes is also estimated based o
types of changes and components. Issues for fur
analysis are addressed if more specific informat
- 8
ys-
d-
f
-
by

an
l

ral
urs

, a
 on
n
are
se
and

os.
ec-
s,
n-
ce,
 to
ed

er-

m
the
ses
.

eds
ot
r

ter
ic
ut
.

 is
o
ce-
or
sfy
ke
n the
her
on

is needed to perform the analysis.

The following highlights a couple of scenarios an
partial analysis results for the objectives shown
Table 1. The analysis is based on the hypotheti
architecture depicted in Figure 4.

Scenario 1: A third party develops a new feature
interwork with the architecture.

Architecture Impact: Interfaces for third party hav
not been implemented. Proxies are needed to co
municate with third party applications. Further, ne
features need to added to the service source and
vice plan shown in the structural view in Figure
More explicit information on new features need
be identified for further analysis, however.

Scenario 2: The system will be delivered with bas
capabilities. New features for complex call proces
ing will be incrementally introduced.

Architecture Impact: The architecture suppor
incremental development because of the separa
of concerns, decoupling of functionality through th
blackboard, the controlled mechanism for servi
interactions, and a mechanism used specifically
incremental delivery. Further analysis on perfo
mance and memory capacity needs to be conduc

Scenarios could be described in different levels
detail. Based on the stakeholder objectives and p
liminary analysis results, some scenarios may
further refined or other scenarios in the same ca
gory may need to be developed. For an applicati
just a few scenarios were initially developed colla
oratively with the architect. After the analysis an
discussion with the architect, a lot more scenar
were generated for further evaluation.

5. Lessons Learned

We have applied this framework and set of views
several projects within Nortel. The analysis
heavily based on stakeholder objectives. For exa
ple, in one project we grouped the stakehold
objectives into five categories and added addition
two to cover as many areas as possible. One was
basic needs, the other one was for potential fut
changes that were not described in the stakeho
objectives. Over thirty scenarios were then dev
oped and classified based on the objectives for t
exercise. For another much smaller project, w
ended up with more scenarios than the previo
example for deeper analysis.
 -

 b

i

d
je

r

th
n

i
t

o

l
a
h
t
u
n
c
o

o

v

c
n
n
r
t
r
a
e

iv

o
l

n

fy
 t
l

3],
ve
s

 a
io
rly
at
ral
ck-
o-
rio
c-

be
al-
n-
hat
g
be
 a
a-
we
se,
e
s-

n.
m-
m-
nd
ng
em
le

n
en-
sed
is
e-
of
d
rts
d
tive

ed
t to
ted
er

ty
ch
 to
We adopted and extended SAAM [7] by not on
identifying, for each scenario, required changes,
also estimating the effort required (low, medium,
high) to make the changes based on the requ
changes and domain experts experiences. These
types of information together gave us a better i
of how the system could support each of the ob
tives or the risk levels for system evolution or reu
across applications than just counting the numbe
changes.

Further, the analysis could qualitatively reveal
reusability aspect of an architecture. By identifyi
and analyzing areas that are reusable, tailorable
not reusable based on explicit scenarios and var
insight views, rather than design from scratch,
development time for the architecture and hig
level design for a new one project in the same pr
uct line was reduced. For instance, the service h
dler and service initiator in Figure 4 are high
reusable, and are easy to modify or enhance b
on the current control and communication mec
nisms. On the contrary, the risk level of reusing
existing resource handler shown in Figure 4 co
be high due to its idiosyncratic implementatio
Similar results were obtained for a real proje
where parts of the architecture got reused and s
areas were overhauled for a new project.

Three different tabular representations are also u
to summarize the results. One representation sh
the analysis results based on objectives. A summ
is also attached for each objective to address ide
fied changes and overall effort required or risk le
involved for the required changes for evolution,
suitability of the architecture for another proje
The second representation demonstrates sce
interactions. For each component, the list of sce
ios that cause changes to it are listed. The third
resentation is a summary based on quality attribu
Similar to the previous representation, the scena
that have significant impact on the qualities
listed. We found these representations highly us
devices for communicating with stakeholders.

The role of views. The scenarios are the main dr
ers to evaluate various areas of an architecture.
architectural views can reveal deeper informati
however. Scenarios describe important functiona
that the system must support or identifies where
system may need to be changed over time. Sce
ios and the structural view are effective in identi
ing components that need to be modified. From
maintenance perspective, scenarios are usefu
- 9
ly
ut

or
red
 two
ea
c-

se
 of

e
g
, or
ous
he
h-
d-

an-
y
sed
a-
he
ld
.
t,
me

sed
ws

ary
nti-
el
or
t.
ario
ar-
ep-
es.
ios
re
ful

-
The
n,
ity
the
ar-
-
he
for

adaptive and preventive maintenance activities [1
but are less effective in corrective and perfecti
maintenance activities. Other architectural view
must be used to support the analysis.

For instance, analysis of scenario interaction is
critical step in SAAM. A high degree of scenar
interaction may indicate that a component is poo
isolated [7]. However, the style view may show th
this is just the nature of a particular architectu
pattern. For instance, the blackboard in the bla
board model highly interacts with other comp
nents. In this case, the focus is shifted from scena
interaction to consistency checking of the archite
ture and its style. The dynamic view may then
appropriate to examine the behavioral aspect to v
idate that the control and communication are ha
dled in an expected manner. Another example is t
an identified violation or shortcut in the existin
system for performance purposes may not
needed in the future if the system is ported to
faster platform. Another possible reason for viol
tions could be legacy systems. A project that
dealt with overhauled a legacy system. In this ca
some known violations were not carried into th
new design. Hence, the maintainability of the sy
tem could be improved by removing the violatio
Violations were also used to validate the confor
ance of the implementation to the architecture. Si
ilarly, the mapping between components a
functions can reveal the cohesion and coupli
aspects of the system. This view is useful for syst
partitioning and maintenance, especially for “ripp
effect” analysis.

Scenario generation. Another often asked questio
about scenario-based analysis is “When to stop g
erating scenarios?” [7]. Two approaches were u
in our study in SEAL. First, scenario generation
closely tied to various types of objectives: stak
holder, architectural, and quality. We spent a lot
effort in identifying the information up front. Base
on the objectives, we worked with domain expe
closely and iteratively to identify scenarios an
cluster these scenarios to make sure each objec
is well covered.

QFD (Quality Function Deployment) was then us
to validate the balance of scenarios with respec
the objectives. A cascade of matrices are genera
to show the relational strengths from stakehold
objectives, architectural objectives, to quali
attributes [2]. Priorities are calculated for ea
objective. Finally, quality attributes are translated
 -

f
a

h

a

i
e
e

h
t

i
s
u
r

o

t

s

eas
ue
tand
ap-
us
g
tical

on
gn
 of
nd

for
nd
ts.

 of
re

r-
-

s

m-

-

e

.
c-
scenarios to reveal the coverage of each qua
attribute. An imbalance factor is then calculated
each quality attribute by dividing coverage by qu
ity priority. If the imbalance factor is less than 1, w
may need to develop more scenarios to address
quality attribute in accord with stakeholder, arch
tectural, and quality importances. For instance,
the relative priority of performance is 18 and t
coverage of performance by the scenarios is 9,
imbalance factor is 0.5. This suggests that more s
narios need to be developed to address performa

6. Summary

This paper presented a framework and a set of ar
tectural views for the analysis of software archite
ture for evolution and reusability. The approach w
developed from empirical studies on large-sc
telecommunications systems for the assessmen
reuse across applications and for system evolut
The scenarios are aligned with stakeholder obj
tives, architectural objectives, and quality attribut
The scenarios can also be reused across app
tions. More importantly, the analysis reveals t
sensitivity of a system due to the change in or
importance of objectives, and future requirements

The method also could facilitate the comparison
different architectures developed in the sam
domain using different paradigms (e.g. OO vs. fun
tional decomposition) by using concrete scenar
aligned with the other views. In Section 5, analy
results for one architecture were illustrated. Sho
another architecture developed in different pa
digm be in place for comparison, the comparis
would be performed by identifying components th
need to be modified, added, or removed based
scenarios mapped onto the other architectural vie
The effort required to make the modifications f
different architectures could also be estimated ba
on complexity information, architectural views, an
historical data for comparison.

Due to proprietary reasons, detailed architectu
and analysis results could not be presented.
SEAL, we have used this technique to analyze
system for better understanding and project evo
tion. The technique was also used to compare
complex call processing systems with respect
their fitness for a new project. The critical succes
of using the technique included better understand
of target systems, better communications amo
various stakeholders, identification of developme
- 10
lity
or
l-
e
 the
i-
 if
e
the
ce-
nce.

chi-
c-
as
le
t of
on.
c-
s.

lica-
e

he
.

of
e

c-
os
is
ld
a-
on
at
 on
ws.
r

sed
d

ral
In

 a
lu-
wo
to
es

ing
ng
nt

of reusable assets, and extraction of problem ar
or sites of complexity. Furthermore, the techniq
even helped the senior designers better unders
architectural issues in their own systems. The c
ture of architectural views and mapping of vario
objectives also were useful information for existin
systems, especially personnel changes are prac
and training for new employee is important.

In SEAL, we have other teams that are working
the complexity measurement of high-level desi
and code. This measurement provides insights
complicated components for detailed analysis a
more accurate estimation of the effort required
the changes. In other words, life cycle end-to-e
analysis is supported for various software produc
We are also developing and validating of a set
metrics for quantitative assessment of softwa
architectures [12].

References
[1] D. Belanger, et al., Architecture Styles and Se

vices: An Experiment Involving the Signal Op
erations Platforms-Provisioning Operations
System,AT&T Technical Journal, Jan/Feb
1996, pp. 54-63.

[2] S. Bot, C.-H. Lung, and M. Farrell, A Stake-
holder-Centric Software Architecture Analysi
Approach, inProc. ISAW 2 - Int’l Software Ar-
chitecture Workshop, 1996.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. So
merlad, and M. Stal,Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley
& Sons, 1996.

[4] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm.
On the Definition of Software System Architec
ture, inProc. of ICSE 17 Software Architecture
Workshop, April 1995.

[5] D. Garlan and M. Shaw. An Introduction to
Software Architecture,Advances in Software
Engineering and Knowledge Engineering, vol.
1, 1993.

[6] R. Kazman, G. Abowd, L. Bass, M. Webb,
SAAM: A Method for Analyzing the Properties
of Software Architectures, inProceedings of
the 16th International Conference on Softwar
Engineering, May 1994, pp. 81-90.

[7] R. Kazman, G. Abowd, L. Bass, P. Clements
Scenario-Based Analysis of Software Archite
 -

i

o

-

r-
ture, IEEE Software, Nov 1996.

[8] P. B. Kruchten. The 4+1 View Model of Arch
tecture,IEEE Software, Nov 1995, pp. 42-50.

[9] C. Krueger, Software Reuse,ACM Computing
Surveys, 24(2), 1992, pp. 131-183.

[10] C.-H. Lung and J. Urban. An Expanded View
Domain Modeling for Software Analogy.Proc.
19th Annual Int’l Comp Software & Applica-
tions Conf - COMPSAC, pp.77-82, 1995.
- 1
-

f

[11] C.-H. Lung, Empirical Experiences in Analyz
ing Software Architecture Sensitivity, inProc.
of COMPSAC, pp. 164-165, 1997.

[12] C.-H. Lung and K. Kalaichelvan, Metrics for
Software Architecture Robustness Analysis,
submitted for publication.

[13] S. Wage, Preventive Software Maintenance:
Prevention is Better Than Cure,Tech. Report,
School of Info. Science and Technology, Live
pool Polytechnic, 1988.
1 -

	An Approach to Software Architecture Analysis for Evolution and Reusability
	Abstract
	1. Introduction
	2. Framework for Information Gathering and Analysis
	Gathering.
	Modeling.
	Analyzing.
	Evaluating.
	2.1 Example of Modeling of Objectives

	3. Architectural Views for Evolution and Reusability Analysis
	Scenarios.
	Functional Flow.
	Structural View.
	Mapping between Functions and Components.
	Causal Diagram.
	Identification of Architectural Styles.
	Identification of Design Violations.

	4. Examples of Scenarios and Analyses
	5. Lessons Learned
	The role of views.
	Scenario generation.

	6. Summary
	References
	Figures and Tables
	Figure 1
	Table 1
	Figure 2
	Figure 3
	Figure 4
	Table 2
	Table 3
	Figure 5
	Table 4

