An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan Rick Kazman
Software Engineering Analysis Lab. Department of Computer Science
Nortel University of Waterloo
Ottawa, Ontario, Canada K1Y 4H7 Waterloo, Ontario, Canada N2L 3G1
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca
Abstract concept of a system and its final executable imple-

_ _ _ mentation” (p. 136). Software architectures are criti-
Software evolution and reuse is more likely tQg artifacts in bridging the gap between the initial

receive higher payoff if high-level artifacts—suchconcept of a system and the system’s implementa-
as architectures and designs—can be reused and ggg; its low-level software components.

guide low-level component reuse. In practice, how-
ever, high-level artifacts are often not appropriatelyl his paper presents a framework and a set of archi-
captured. This paper presents an approach to captt@ctural views that were developed to assess soft-
ing and assessing software architectures for evolware architectures for evolution and reuse built
tion and reuse. The approach consists of @pon a scenario-based approach [7]. This frame-
framework for modeling various types of relevanwork is used to model different types of informa-
information and a set of architectural views for retion, namely, stakeholder information [2,4],
engineering, analyzing, and comparing softwar@rchitecture information, quality information, and
architectures. We have applied this approach gcenarios. Stakeholders can include, for example,
large-scale telecommunications systems, where tl@signers, managers, and end-users. The informa-
approach is useful to reveal areas for improvemetion for stakeholders describes their objectives.
and the potential for reuse. Architecture information deals with the critical
i . design principles or architectural objectives. Quality
Keywords Software architectures, product lines;sormation refers to the non-functional attributes
analysis, software evolution, software reusabilityg;ch as performance, modifiability, availability, and
scenarios integrability. Scenarios are narratives that describe
use cases of a system. Scenarios can be used to cap-
1. Introduction ture the system’s functionality. Scenarios that are
not directly supported by the current system can be
Software evolution and reuse are two critical topicased to detect possible flaws or to assess the archi-
in industry, because of the huge expense involvadcture’s support for potential enhancements. A set
and because of global competition. However, soff scenarios is derived from the stakeholder objec-
ware systems are becoming increasingly complexyes, architectural objectives, and desired system
further complicating the already difficult problem ofquality attributes or objectives. Section 2 will give a
evolving or reusing software assets and products. Taore detailed discussion on this topic.

systematically support the process for the ever _))
growing complexity of software, higher levels of Objectives provide boundaries and drive the analy-

abstraction are needed. Kruchten [9] noted that «“tgHiS. Architectural views are important for evolution
a software reuse technique to be effective, it mu&nd reuse, because various views provide different

reduce the cognitive distance between the initial Perspectives, which are useful in understanding, re-
engineering, and analyzing systems. In addition,

LK ‘ © add Soft Endineeri these architectural views support analysis of sys-
. Kazman's current adaress: software engineering . . .

Institute, Carnegie Mellon Univ., Pittsburgh, PA, tems develOped l_JSIn_g different paradlgms. For
15213. E-mail: kazman@sei.cmu.edu example, one application that we have made of the

views is to compare systems developed using func- FIGURE 1.
tional decomposition and object-oriented design inFramework for Architecture Information

the same problem area. Gathering and Analysis

The main objective of the approach was to

assess an existing architecture for project [Stakeholder [Architecturt [Quality 1
evolution or reuse in a future project in the | Gahering | information} | information| | Informatior| | Scenarop
same problem domain or product line. The # % # ﬁ % ﬁ ; ﬁ
work reflects empirical experience gathered , ,

by an external review team to evaluate the | Modeling |Selolder Ao Q3 —Scenario
sensitivity of an architecture to changes in

key customer value parameters. An example ¢

of a customer value is scalability. For _ : : :
instance: what is the Sensitivity of an archi- Analyzing Architectural Analysis and Artifacts
tecture if the system is to be modified so that #

it supports fifteen features, instead of the pre-

vious ten, and at the same time the system is| Evalatng Architectural Drivers

to be scaled from processing fifty calls to
eighty calls per minute?

The remainder of this paper is organized as follows:

Section 2 demonstrates the framework for analysis.

Section 3 describes the context of architectufdlodeling.Once it is gathered, the information is then
views and various architectural views adopted faligned across information categories. The focus
the analysis of software architectures. Examples ftgre is on mapping stakeholder, architecture, quality,
the views are also demonstrated in this section. Sapd scenario information into usable artifacts. This
tion 4 highlights some example scenarios and partiaformation is used to direct the capture of the archi-
analysis results. Section 5 presents some importtgfiture (if it is
lessons learned from applying the approach to sé@t already recorded in a usable form) and to drive
eral telecommunications systems. Finally, Sectiorf analysis. It is also a critical vehicle in providing
gives our concluding remarks. feedback in the latter phases.

Modeling is a critical phase, since if it is not done

correctly, it can mislead and skew the rest of the
analysis. In the modeling phase both the breadth and
depth of the analysis are taken into account. The

To ensure that the software architecture analygrseadth aspect describes the relationships between:

process is organized and scientific (and hengéakeholders objectives, architectural objectives,

repeatable), a framework for architecture informg-ljallty attributes, and scenarios. For e>'<ample, It Is
useful to form a matrix of quality attributes and

tion gathgring and analysis. was formglateq, %akeholders, to ensure that each attribute is at least
described '1' The_act|v!t|es Qescnbed n tc(camsidered from the perspective of each stakeholder.
framework are performed iteratively instead of in a
strict sequential manner. The depth aspect deals with the levels of abstraction
at which the stakeholder objectives are represented
Gathering.This phase focuses on becoming awagnd hence analyzed). A single stakeholder objective
of the available and required information to do thgr an architectural objective could be represented by
analysis, and then to collect and compile it. Cugeveral quality attributes or scenarios, each describ-
rently four categories of information are beingng one aspect of the objective. The depth at which
addressed: stakeholder, architecture, quality, awgrious types of information are represented will
scenarios or use cases. In the future, the informatigifiect the accuracy (and cost) of the analysis. Model-
categories may be extended, to include for exampieg of the depth aspect is supported by adopting soft-
competitive analysis. ware QFD (quality function deployment) [2], where
relational matrices are used to prioritize high-level

2. Framework for Information
Gathering and Analysis

objectives and the results are fed into correspondirgxample of scenarios will be presented in Section 4.
objectives at the next level. The objectives also are important factors in deter-

. . n mining when to stop generating more scenarios.
Analyzing This phase focuses on specific Softwarg s concept will be addressed in Section 4 as well.
architecture analysis and generation of artifacts to

do the analysis. Examples of artifacts include:

domain models (which help in comparing compet3. Architectural Views for Evolution and

ing architectures within the same functional area Reusability Analysis

[6]); relevant architectural views; scenarios; envi-

ronmental assumptions and constraints; and tradel® development of a complex software system

off rationale. SAAM (Software Architecture Analy- involves various stakeholders. Diverse stakeholders
sis Method) [7] is adopted and extended for thgave different needs and perspectives of the system.

analysis. Explicit scenarios are mapped onto alﬁach perspective represents a partial description of

architecture for analysis of quality attributes. a system. A, complete .descrlptlon _9f a sy_stem
requires multiple viewpoints. In addition, various

Evaluating This phase focuses on drivers for archiviewpoints may be needed at various stages in the

tectural development. In this phase recommendéfe cycle. An architectural view, in this context, is a

tions are made, “hot spots” in the architecture (areg@rspective that satisfies the expressed needs of a

of high predicted complexity, large numbers oftakeholder.

changes, performance bottlenecks, etc.) are locat . . .

and strategies for their mitigation are enumeratetg,%'o‘l‘.has adopted various a_rch|tectural VIEWS that

common reference models (independent of architef'® crltl_cal fqr softwa.re archltec_ture anaIyS|s_. The

ture capture) are identified. It is important that thi§et of VIEWS includes: a static VIEW, a map view, a

phase ties back to the stakeholders’ values, as th amic view, and a resource view [11]. Each view

are the drivers of the analysis in the first place. and some commonly used methods are briefly
described below.

2.1 Example of Modeling of Objectives « Static view The static view shows the overall

))) topology. The methods that can be used for this
HaV|ng described the framework, we now g|Ve an view include |Ogica| diagram’ structure dia-

example in the domain of telecommunication gram, object diagram, and module diagram.
switching software. In this example we show a cou- , Map view. The map view identifies the style,
ple of stakeholder objectives, architectural objec- design violations, and the mapping between
tives, and quality objectives, and the alignment of components and functions or features. An

these three types of objectivg in Table 1. example will be presented in the next section.
.) » Dynamic view The dynamic view addresses
Table 1: Stakeholder-Architectural-Quality the behavioral aspects of a system. This view
Objectives: An Example can be supported by functional or operational
Stakeholder Quality diagram, causal diagram, messaging diagram or
Objectives Architectural Objectives Attributes messagtetseque?fe Chagil:?btjed 'tnteraCt'OH dia-
gram, state machine, and Petri net.
Allow interworking Expose functionality Reliability ‘R . Th . deal ith
with other products which provides the Modifiability esoqr_ce Y'eW € resource view deals wi
and third. implementation of stan- Portability &aﬁ'igslgztaetcl:?}?]igﬁggclflgeﬂg)ee esrzlslﬁrend rasgﬂ;)(::c‘)sl’.t
parties dardized third party us |] > - UsSel
application program- of this view, including the identification of the
ming interfaces. mapping of software onto hardware, queuing
Allow independent | Decouple functionalities | Reliability model, simulation and performance.
development and and use of virtual inter- Modifiability The development of the views does not have be car-
incremental deliv- faces. Integrability
ery of new features. ried out in a strict sequential manner. Rather, the

process is iterative in nature. Further, not all the

A set of scenarios are then developed based on thiews may be needed for each evaluation and each
stakeholder and architectural objectives. Eachiew is not constrained by a particular method or

objective may consist of a set of scenarios or sceetation. Selection of appropriate views and suitable
nario classes. Each scenario class in turn consistsméthods depend on the specific application environ-
various number of scenarios or sub-classes. Ament and stakeholder values.

demonstrates a real usage of these viewssimple but useful. In our experience it is par-
for a project. The structural view corresponds to thécularly useful for an object-oriented system

static view. The functional flow and the causal diawhere frequently only the modelled real-world

gram belong to the dynamic view. The map viewentities are described rather than showing how
consists of three items as just described. Ththe system actually functions.

resource view was not incorporated for this exercissla.O return to our telecommunications examole. there
primarily because the main objective focused on pie,

. - e large number of features in an advanced tele-
evolution and reuse perspective, and a separafilé 9

team was working on the performance issues. Th ommunications system. Understanding the system

views and their relationships are described next. as a whole is an enormous and daunting task. So, a
typical scenario for beginning to understand such a

system would be to model a normal telephone call.

A simplified functional flow for a normal phone call
FIGURE 2. An Example of the in a call processing system is showe 3.
Usage of Architectural Views

FIGURE 3. Functional View for a

Functionality and Hypothetical System
Scenarios| non-functional aspects
create handle
process answer
Process o Funci * +
- unctiona Structural 5 i
critical [ty B EE— \;iLgiNura %om]pkgnent> provide connect
functions prompt call
/ \ collect p»| analyze
digit digit
Mapping of c | dentificati Identificatiol
ausal entification - f desi
functionalit}<> diagram of styles 3i0|:tisé?,2
& componept
%te;tic rele;tion;s_hiprnamicreIationshipsArchitecture \I/Eiélloallit(i:gns& Structural View. Existing legacy systems
etween tunction . .
and components and systeme behavomaures and rationales usually do not have appropriate pre-existing
architectural representations. Consequently, to

analyze a software architecture, a

representation is needed that shows the overall
Scenarios. In this study, scenarios are the main system topology. This view integrates and
driver for the capture of other architectural views extends two methods presented in [5] and [6]
and for the analysis of an architecture. To begin the to address the classification and generalization
analysis process, a few scenarios are typically of a system’s components and functions, and
selected to identify and understand the system’s the connections between components.

critical functionality.
y The classification and generalization of components

Functional Flow. The functional (sometimes calledand connections also facilitates the estimation of
operationa) flow, in this context, refers to the cost or effort required for changes to be made. For
sequence of functions that are identified based orirsstance, the cost for a change to be made to a pro-
set of scenarios. This view reveals how the systeoessing unit normally would be higher than a
works to realize particular scenarios. change to be made to a data repository. Such early

nQandintentionallycrude) estimates help in determin-

Mos_t arc_h_ltectural repres?ntf;ltlons ”empha5|ze 0 |¥g where to place more effort in an architectural
static entities: the system’s “boxes (componentsg nalysis

and “links” (connectors). A high-level functional
flow view aids understanding by showing the criticallapping between Functions and Components.

system functions and the processing of these furithe mapping between functions and components
tions: anoperationalview of the system. This view provides a view that supports traceability analysis,

FIGURE 4. Structural View for a Hypothetical Call Processing System

Service Initiator

| Service Service Service

\ Directory Base S‘uppller

L — — 9 — — —
Blackboard

r"S$ | — — — 7
\

Service Handler

Digit Dial i i
Service Seryic
Collector Plan EventTp

\
\ Service | | Digit Analyzer
Control — = -
Resource Line . ‘ ; Service | |
Handler Interface \ Plan | |
\ 1| Digit
Trqnslator
L — | - —
| Selector Route |
r i | Seber
\ | Connection) | Physical
| ‘ Connection
ik : \
Billing Account
Hangdler | Information | |
L — — — i
1 Process —» Control Flow
& Computation Data Flow
@ Active Data Repository — —p» Synchronization
[Passive Data Repository
[7 Logical Grouping

especially if there is any modification to be made to
the system. Two different representations are used _ _
for the mapping Table|2 shows the mapping of the ~ Table 2: Mapping of Functions to

system’s_main functions or features to components, Components: An Example
whereaq Table |3 demonstrates an example of the _
mapping of components to functions or features. Function Components Involved

The components involved are tied back to thos
shown in the structural view as showe 4
The table helps locate all components involved for

" Digit Dial Plan, Line Interface, Service Handler,
Collection Service Initiator

particular function. The book-keeping effort in cre-| Call Service Handler, Line Interface, Billing
ating and maintaining such views, and the links Connection | Handler

between them, is crucial to supporting analysis
Humans can not be expected to keep all the detai
in their heads, all the time.

i Answer Service Handler, Line Interface, Connection
SI-Iandling

Table 3: Mapping of Components to
Functions: An Example

Line Interface

Digit Collection, Call Connection,

quickly generated based on a user’s needs. The
tables can also be used as a quick-and-dirty analysis
of functional cohesion and coupling. If a function

Component Functions Involved . ; .

involves too many components, this function may
Dial Plan Digit Collection need to be decomposed further into several sub-
Service Digit Collection, Call Connection, functions. In addition, the information could be used
Handler Answer Handling to cluster components based on the cooperations

and dependencies of components. For instance, the

components Service Handler and Line Interface pre-
sented ir] Table [3 show higher functional cohesion
as both components are related to a set of common

shows the mapping of components to fundunctions.

tions for a particular scenario. The mapping sup-

ports the identification of the functions that a

component contributes. The functions identified foFfausal Diagram. Architectural representations
the mapping do not have to be specific to a systefost commonly describe static features, things like:
In other words, these functions could also be generf@mponents, the relationship between components,
to a application area such as a set of reference furtigh-level functionality, and allocation to hardware.
tions for the purpose of Comparing different Sys:rhebehaVioralaSpeCt Of the SyStem iS important fOI’
tems. When sets of functions are broadly agredgh-level understanding, communication among

upon and re_used' we have a reference model. Stakeholders, architecture eVOlUtion, and re-
engineering. This view also supports the

The tables, though conceptually simple, are usefglyelopment of an accurate static view and helps

in demonstrating different aspects of functions angyjigate the consistency of the other representations.
components. The concept is similar to spreadsheet

software where diverse representations can be

Answer Handling

FIGURE 5. Dynamic View: An lllustration of “Create Process” for the
Hypothetical Call Processing System

0.S
r—— - — — n
| Interrupt handler |
| f:; it\r]eer ?c?faun- Object1 initiates b g
_ /V an event Object5 sends
| Receiver :\\Obj &ty to Objects A the event to Object2 sends
Receiver creates oblectz a command
| component sends :/VObjectz to Object5
original message
| to Objectl
| | Object5
creates . —
L — — — - |) h Object5 -
Object2 Object? - ates (' Function 3 N
corgatet% Object6 \‘ ~__7
jec
Obj$ct5 sends Object5 sends
a reference a reference
\ to Object6 so to Objectl,
Object3 the_lt ObjectG_ so that Objectl
((:)rg_atetf1 points to Object7 points to Object6
jec _ ~
(' Function 2
- _

Various methods could be used to model the beh: ~ Table 1: Features to Focus on for the

ioral aspect of a system. Examples include sta Analysis of the Blackboard Model
machines, message sequence charts, and Petri r

A generic causal representation is present F + When the blackboard wants to send a
|ure 5| as an illustration [10]. The tail of an arrov message to some units, does it
reveals the cause, while the head of an arrow depi broadcast the message to all the units

or simply send the message to the
registered units?

there is a corresponding causal diagram to reveal { Control/ _
behavioral aspedt. Figuré 5 is an example of “crez| Registration * Does the model support independent

N [. . control or broadcast control?
process” demonstrated in the functional flow (g mechanism

shown iff Eigure B. + Is the control single-threaded or multi-
) threaded?

The behavioral aspect is important to understand t « Is the message control, data, or both?
system before reuse occurs. In addition, the dynan
view also supports maintainability as a syster Communicatio | Is there a specific point of contact or
evolves. For instance, if modifications are made t| N mechanism g“'t:&'e pgmts dofhcontact be“’."eer; the
static architectural representations may stay tl ackhoard and the computationa

the effect. For each function in the functional flon

its?
same, but some of the system’s behaviors may e
modified. The modification of behaviors should be| Violations * Are there any links that violate the
but typically can not be, explicitly represented br control or communication policy?
static architectural views. Another example is that Integrability « If new components are added to the
personnel changes or the architect leaves, there n| 4y system, will they be integrated into the
be different interpretations for the static view b mogifiability blackboard the same way as existing
other designers or new employees. components?

Identification of Architectural Styles. An architec-
ture can be classified into more than one style and
architecture allows coexistence of multiple style
[5,8]. The primary purposes of the style or pattern
to impose an overall structural interpretation on
software system or subsystem for consistency chec
ing, and to support human to human communici
tions of the software.

In addition, the analysis can support the decision-
making process in choosing an appropriate style for
the target domain or trade-off analysis. The appro-
priate style can then be reused for the target domain,
even if the architecture itself is evaluated to be risky
to be directly reused for the target. For large systems
where multiple styles may exist, analysis of style
interoperability is important. Style interoperability
For the example shown 4, the behavior is directly related to system integritymaintainability.
the architecture is similar to a blackboard [3,5], sinclt is important to identify and analyze how one par-
the system has a centralized control, called a servticular style communicates with other styles [1].
handler, to coordinate a group of components. Tl
identification of an architectural style help focus o
critical features such as the control mechanism of
style, the communication mechanism between cor
ponents, and the integrability of new component, «

Identification of Design Violations This view

deals with the components or links that are missing
or are not represented properly, and the control or
communication mechanisms that violate the policy

L . f the identified hitectural style. Th hitec-
the modifiability of existing components. Theseo © \aentined architectural sty'e © archriec

. tant feat for the blackboard gel tural style may only reveal an “idealized” or “as-
important. features or the blackboard Model alionged” software architecture initially developed

d for more detailed analyses as listed Iby a group of software designers. This view, on the
' other hand, recovers the “as-built” aspect of an
architecture supported by the causal representations.

For instance, the blackboard’s control mechanism

requires a single point of contact between the cen-

tral control unit and the other cooperative compo-

nents, but the architecture that follows the style, in

fact, has multiple points of contact under certain cir-

circumstances. is needed to perform the analysis.

Some reasons for the violations could be legacy sy$he following highlights a couple of scenarios and
tems, modifications for performance, understandpartial analysis results for the objectives shown in
ability, and discrepancies in the levels o. The analysis_is based on the hypothetical
abstraction. The violations must be explicitly docuarchitecture depicted |n Figu@ 4.

menFed. to r(_aduce.potennal problems Caqsed t@’cenario 1: A third party develops a new feature to
ambiguity or |nconS|stenc_y. T.he d_qcumentaﬁon Calnwterwork with the architecture.

also support system maintainability. Architectura

violations are as important as normal architecturadhrchitecture Impact: Interfaces for third party have
features and must be identified before reuse occuidt been implemented. Proxies are needed to com-

to reduce unnecessary maintenance effort. municate with third party applications. Further, new
features need to added to the service source and ser-

vice plan shown in the structural view 4.

4. Examples of Scenarios and Analyses More explicit information on new features need to
be identified for further analysis, however.

To make a concrete evaluation for the architecture, a) , , . .
number of explicit scenarios are developed based gf¥ENar0 2: The system will be delivered with basic
stakeholder and architectural objectives. Elicitatioﬁapab'“t'es_' New feature.s for complex call process-
questions are prepared for each objective and df¥d will be incrementally introduced.

used in interviewing domain subject experts. Thes&rchitecture Impact: The architecture supports
interviews are used to better understand systems andremental development because of the separation
to develop scenarios for analysis. of concerns, decoupling of functionality through the

Each objective may consist of a set of scenario?.laCkboard' the controlled mechanism for service

Moreover, the scenarios developed for each Objeglteractlons, and a mechanism used specifically for

tive could be categorized for complex appIicationé,ncremem"’II delivery. Further analysis on perfor-
creating a reusable checklist of architectural cofnance and memory capacity needs to be conducted.
cerns. In telecommunications systems, for instanc8cenarios could be described in different levels of
interactions of complex services or features need tetail. Based on the stakeholder objectives and pre-
be validated. Those feature interactions are groupéichinary analysis results, some scenarios may be
into different classes to have better scenario covéliarther refined or other scenarios in the same cate-
age and to facilitate evaluations. gory may need to be developed. For an application,
st a few scenarios were initially developed collab-

In addition to the scenarios developed directly fronSt . i)
objectives, a group of scenarios for basic uses of tr auvely W'th. the arch|te_ct. After the analysis aqd
system may need to be generated. Often, analys lscussion with the architect, a Iqt more scenarios
will focus on potential future changes to a systemV.Vere generated for further evaluation.
Basic needs are thus usually neglected. Basic needs

are not and product differentiators, yet one cannot

have a product without the basic functionality. Fo5. Lessons Learned

example, a basic call service must exist no matt_%e have applied this framework and set of views to
how complex the communications may be. Basic

. : . Several projects within Nortel. The analysis is
needs are thus critical for architectural analysis, bLht proJ Y

often are not explicitly expressed by stakeholders eavily based on stakeholder objectives. For exam-
plcttly exp y "ple, in one project we grouped the stakeholder

For each scenario, the effect on the architecture @bjectives into five categories and added additional

identified. Typically, there is either no effect (notwo to cover as many areas as possible. One was for
change to the architecture required) since the sdeasic needs, the other one was for potential future
nario is directly supported by the architecture, ochanges that were not described in the stakeholder
changes in the architecture are required to satisfbjectives. Over thirty scenarios were then devel-

the scenario. In addition, the effort required to makeped and classified based on the objectives for this
the necessary changes is also estimated based ongkercise. For another much smaller project, we

types of changes and components. Issues for furtremded up with more scenarios than the previous
analysis are addressed if more specific informatioexample for deeper analysis.

We adopted and extended SAAM [7] by not onlyadaptive and preventive maintenance activities [13],
identifying, for each scenario, required changes, bbut are less effective in corrective and perfective
also estimating the effort required (low, medium, omaintenance activities. Other architectural views
high) to make the changes based on the requirgalst be used to support the analysis.

changes and domain experts experiences. These tE/o . . o L
or instance, analysis of scenario interaction is a

types of information together i . . .
yp g gave us a better Iqecarltlcal step in SAAM. A high degree of scenario
of how the system could support each of the objec- : S .
. . . interaction may indicate that a component is poorly
tives or the risk levels for system evolution or reuse

across applications than just counting the number |sfolated [7]. However, the style view may show that
changes P J g s is just the nature of a particular architectural

pattern. For instance, the blackboard in the black-
Further, the analysis could qualitatively reveal théoard model highly interacts with other compo-
reusability aspect of an architecture. By identifyingnents. In this case, the focus is shifted from scenario
and analyzing areas that are reusable, tailorable, ioteraction to consistency checking of the architec-
not reusable based on explicit scenarios and varioige and its style. The dynamic view may then be
insight views, rather than design from scratch, thappropriate to examine the behavioral aspect to val-
development time for the architecture and highidate that the control and communication are han-
level design for a new one project in the same prodHed in an expected manner. Another example is that
uct line was reduced. For instance, the service haan identified violation or shortcut in the existing
dler and service initiator i 4 are highlysystem for performance purposes may not be
reusable, and are easy to modify or enhance basageded in the future if the system is ported to a
on the current control and communication mechdaster platform. Another possible reason for viola-
nisms. On the contrary, the risk level of reusing théons could be legacy systems. A project that we
existing resource handler showne 4 couldealt with overhauled a legacy system. In this case,
be high due to its idiosyncratic implementationsome known violations were not carried into the
Similar results were obtained for a real projectpew design. Hence, the maintainability of the sys-
where parts of the architecture got reused and sorteam could be improved by removing the violation.
areas were overhauled for a new project. Violations were also used to validate the conform-
Three different tabular representations are also usagce of the |mplementat|on fo the architecture. Sim-
ff rly, the mapping between components and
Y(hctions can reveal the cohesion and coupling

a:gl)épects of the system. This view is useful for system

IS also attached for each objective tp addregs iden artitioning and maintenance, especially for “ripple
fied changes and overall effort required or risk lev fect” analysis

involved for the required changes for evolution, or
suitability of the architecture for another projectScenario generation Another often asked question
The second representation demonstrates scenaaioout scenario-based analysis is “When to stop gen-
interactions. For each component, the list of scenagrating scenarios?” [7]. Two approaches were used
ios that cause changes to it are listed. The third rejo- our study in SEAL. First, scenario generation is
resentation is a summary based on quality attributedosely tied to various types of objectives: stake-
Similar to the previous representation, the scenari¢wlder, architectural, and quality. We spent a lot of
that have significant impact on the qualities areffort in identifying the information up front. Based
listed. We found these representations highly usefah the objectives, we worked with domain experts
devices for communicating with stakeholders. closely and iteratively to identify scenarios and
cluster these scenarios to make sure each objective

The role of views The scenarios are the main driv-.
e the main d hsewellcovered.

ers to evaluate various areas of an architecture. T
architectural views can reveal deeper informatiorQFD (Quality Function Deployment) was then used
however. Scenarios describe important functionalityo validate the balance of scenarios with respect to
that the system must support or identifies where thhe objectives. A cascade of matrices are generated
system may need to be changed over time. Scen&r- show the relational strengths from stakeholder
ios and the structural view are effective in identify-objectives, architectural objectives, to quality
ing components that need to be modified. From thatributes [2]. Priorities are calculated for each
maintenance perspective, scenarios are useful fobjective. Finally, quality attributes are translated to

scenarios to reveal the coverage of each qualityf reusable assets, and extraction of problem areas
attribute. An imbalance factor is then calculated foer sites of complexity. Furthermore, the technigue
each quality attribute by dividing coverage by qualeven helped the senior designers better understand
ity priority. If the imbalance factor is less than 1, wearchitectural issues in their own systems. The cap-
may need to develop more scenarios to address tiwse of architectural views and mapping of various
guality attribute in accord with stakeholder, archiobjectives also were useful information for existing
tectural, and quality importances. For instance, $ystems, especially personnel changes are practical
the relative priority of performance is 18 and theand training for new employee is important.

coverage of perfqrmance ,by the scenarios is 9, tWﬁ SEAL, we have other teams that are working on
|mb_alance factor is 0.5. This suggests that more SChie complexity measurement of high-level design
narios need to be developed to address performang@y coge. This measurement provides insights of

complicated components for detailed analysis and
more accurate estimation of the effort required for
6. Summary the changes. In other words, life cycle end-to-end

This paper presented a framework and a set of arcih@lysis is supported for various software products.
tectural views for the analysis of software architecVe are also developing and validating of a set of
ture for evolution and reusability. The approach wad€trics for quantitative assessment of software
developed from empirical studies on large-scal@'chitectures [12].

telecommunications systems for the assessment of

reuse across applications and for system evolutio|§.eferenceS

The scenarios are aligned with stakeholder obje¢l] D. Belanger, et al., Architecture Styles and Ser-
tives, architectural objectives, and quality attributes. vices: An Experiment Involving the Signal Op-
The scenarios can also be reused across applica- erations Platforms-Provisioning Operations
tions. More importantly, the analysis reveals the SystemAT&T Technical JournalJan/Feb
sensitivity of a system due to the change in or the 1996, pp. 54-63.

importance of objectives, and future requirements.[z] S. Bot, C.-H. Lung, and M. Farrell, A Stake-

The method also could facilitate the comparison of holder-Centric Software Architecture Analysis
different architectures developed in the same Approach, inProc. ISAW 2 - Int’'| Software Ar-
domain using different paradigms (e.g. OO vs. func- chitecture Workshqpl996.

tional decomposition) by using concrete scenarios

aligned with the other views. In Section 5, analysif3] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
results for one architecture were illustrated. Should ~ Merlad, and M. StaRattern-Oriented Software
another architecture developed in different para- Architecture: A System of Patterdehn Wiley
digm be in place for comparison, the comparison & Sons, 1996.

would be performed by identifying components thaf)ﬂ C. Gacek, A. Abd-Allah, B. Clark, B. Boehm.

need to be modlged,tattjﬁed:[hor remhqt\/e? balse_d On the Definition of Software System Architec-
scenarios mapped onto the ofher architectural VIews. ture, inProc. of ICSE 17 Software Architecture

The effort required to make the modifications for .

.) . Workshop April 1995.
different architectures could also be estimated based PARM
on complexity information, architectural views, and5] D. Garlan and M. Shaw. An Introduction to
historical data for comparison. Software ArchitectureAdvances in Software

Due to proprietary reasons, detailed architectural ~Engineering and Knowledge Engineeringl.
and analysis results could not be presented. In 1,1993.

SEAL, we have used this technique to analyze] R.Kazman, G. Abowd, L. Bass, M. Webb,
system for better understanding and project evolu-~ gaaM: A Method for Analyzing the Properties
tion. The technique was also used to compare twWo . Software Architectures, iRroceedings of

complex call processing systems with respect 0 he 16th International Conference on Software
their fitness for a new project. The critical successes Engineering May 1994, pp. 81-90.

of using the technique included better understanding
of target systems, better communications amor@] R. Kazman, G. Abowd, L. Bass, P. Clements.
various stakeholders, identification of development Scenario-Based Analysis of Software Architec-

-10 -

ture, IEEE SoftwareNov 1996. [11] C.-H. Lung, Empirical Experiences in Analyz-
ing Software Architecture Sensitivity, Proc.
[8] P. B. Kruchten. The 4+1 View Model of Archi- of COMPSACpp. 164-165, 1997.
tecture JEEE SoftwareNov 1995, pp. 42-50.
[12] C.-H. Lung and K. Kalaichelvan, Metrics for

[9] C. Krueger, Software ReuseCM Computing Software Architecture Robustness Analysis,
Surveys24(2), 1992, pp. 131-183. submitted for publication

[10] C.-H. Lung and J. Urban. An Expanded View of[13] S. Wage, Preventive Software Maintenance:
Domain Modeling for Software Analogiroc. Prevention is Better Than CufBgch. Report
19th Annual Int'l Comp Software & Applica- School of Info. Science and Technology, Liver-
tions Conf - COMPSAGp.77-82, 1995. pool Polytechnic, 1988.

-11 -

	An Approach to Software Architecture Analysis for Evolution and Reusability
	Abstract
	1. Introduction
	2. Framework for Information Gathering and Analysis
	Gathering.
	Modeling.
	Analyzing.
	Evaluating.
	2.1 Example of Modeling of Objectives

	3. Architectural Views for Evolution and Reusability Analysis
	Scenarios.
	Functional Flow.
	Structural View.
	Mapping between Functions and Components.
	Causal Diagram.
	Identification of Architectural Styles.
	Identification of Design Violations.

	4. Examples of Scenarios and Analyses
	5. Lessons Learned
	The role of views.
	Scenario generation.

	6. Summary
	References
	Figures and Tables
	Figure 1
	Table 1
	Figure 2
	Figure 3
	Figure 4
	Table 2
	Table 3
	Figure 5
	Table 4

