
QButterfly: Lightweight Survey Extension for Online User
Interaction Studies for Non-Tech-Savvy Researchers

Nico Ebert
nico.ebert@zhaw.ch

Zurich University of Applied Sciences, School of
Management and Law

Winterthur, Zurich, Switzerland

Björn Scheppler
Zurich University of Applied Sciences, School of

Management and Law
Winterthur, Zurich, Switzerland

Kurt Ackermann
Zurich University of Applied Sciences, School of

Management and Law
Winterthur, Zurich, Switzerland

Tim Geppert
Zurich University of Applied Sciences, School of

Management and Law
Winterthur, Zurich, Switzerland

ABSTRACT
We provide a user-friendly, flexible, and lightweight open-source
HCI toolkit (github.com/QButterfly) that allows non-tech-savvy
researchers to conduct online user interaction studies using the
widespread Qualtrics and LimeSurvey platforms. These platforms
already provide rich functionality (e.g., for experiments or usability
tests) and therefore lend themselves to an extension to display
stimulus web pages and record clickstreams. The toolkit consists of
a survey template with embedded JavaScript, a JavaScript library
embedded in the HTML web pages, and scripts to analyze the
collected data. No special programming skills are required to set up
a study or match survey data and user interaction data after data
collection.We empirically validated the software in a laboratory and
a field study.We conclude that this extension, even in its preliminary
version, has the potential to make online user interaction studies
(e.g., with crowdsourced participants) accessible to a broader range
of researchers.

CCS CONCEPTS
• Human-centered computing → Laboratory experiments;
Field studies; User studies; Systems and tools for interaction
design.

KEYWORDS
online user interaction studies, online experiments, Qualtrics, LimeSur-
vey, open source, HCI toolkit
ACM Reference Format:
Nico Ebert, Björn Scheppler, Kurt Ackermann, and Tim Geppert. 2023. QBut-
terfly: Lightweight Survey Extension for Online User Interaction Studies
for Non-Tech-Savvy Researchers. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI ’23), April 23–28, 2023, Ham-
burg, Germany. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3544548.3580780

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3580780

1 INTRODUCTION
Companies such as Alphabet, Amazon, and Microsoft, permanently
expose their users to user interaction studies in the form of simulta-
neous experiments to optimize their websites’ effectiveness [24, 34].
For example, Microsoft’s Bing search engine team studied the effect
of additional site links in their search engine ads (Figure 1) and, as
a result, was able to increase revenue by “tens of millions of dollars
per year with neutral user impact” [25]. These experiments are
often carried out directly in the field with a specific percentage of
(often unknowing) users involved over some time [24], and in-situ,
as participants use their everyday devices instead of laboratory
equipment. This makes it possible to observe user behavior in a
real-world environment instead of an artificial one [4]. Platforms
like Optimizely allow website owners to conduct online user inter-
action experiments on their websites in real-time [30], and online
user interaction studies do not necessarily have to be carried out
in the form of experiments (e.g., randomization, different stimuli).
Website owners can also ask users for qualitative feedback and
integrate analytics tools, such as Matomo, Open Web Analytics,
or Google Analytics, to observe user behavior and optimize their
website accordingly (e.g., [18]).

However, unlike in these mostly correlational studies conducted
by practitioners, researchers in HCI and related disciplines typi-
cally want to develop and test a theory or design theory-guided
artifacts. Therefore, they need a higher level of control than the
abovementioned examples and different instruments to conduct
studies (e.g., for screening, controlling for extraneous variables, or
carrying out attention and manipulation checks). There is a rising
demand among HCI researchers to conduct controlled studies at

Esurance Auto Insurance – You Could Save 28% with Esurance. Ads
www.esurance.com/Califorina
Get Your Free Online Quote Today!

Esurance Auto Insurance – You Could Save 28% with Esurance. Ads
www.esurance.com/Califorina
Get Your Free Online Quote Today!
Get a Quote · Find Discounts · An Allstate Company · Compare Rates

Figure 1: Bing ads without (top) and with site links (bottom)
as example stimuli in an online user interaction study [25]

https://orcid.org/0000-0002-9683-4792
http://github.com/QButterfly
https://doi.org/10.1145/3544548.3580780
https://doi.org/10.1145/3544548.3580780
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580780


CHI ’23, April 23–28, 2023, Hamburg, Germany Ebert et al.

scale [10, 12]. Therefore, participants are often recruited from a
panel or platform, such as Amazon Mechanical Turk (MTurk), and
directed to other platforms that help to conduct surveys, experi-
ments, or usability tests (e.g., [23]).

Despite the popularity of controlled online user interaction stud-
ies, researchers have many technical challenges to overcome [19].
First, it remains laborious for scientists to conduct controlled on-
line user interaction studies, especially with a large number of
participants (e.g., collecting data from multiple tools that present
either survey or stimulus elements) [19]. Second, researchers who
wish to develop such studies need to have software development
skills and be able to develop the required functions in a customized
manner (e.g., to identify participants during the study) [19]. Lastly,
researchers and study participants need to use multiple and often
isolated tools and websites (e.g., survey website, stimulus web-
site), which is especially error-prone in a complex study design
with many users [19]. We are not aware of any easy-to-use and
open-source software suitable for settings that (i) allow the use
of standard experimental features, such as randomization, presen-
tation of multiple stimuli, and flexible questions and, at the same
time, (ii) ensures a consistent stimulus presentation even when
users complete the study using their own private equipment.

To address this need, this paper introduces the open-source
QButterfly HCI toolkit, which allows non-tech-savvy users to de-
sign controlled user interaction studies using the widely available
Qualtrics and LimeSurvey platforms. QButterly has already suc-
cessfully been used in HCI research (e.g., [8, 9]). Our software
enhances existing survey platforms with stimulus presentation and
user-tracking features and consists of (i) a premade survey template
containing embedded JavaScript to manage the website presenta-
tion and collect user-tracking data, (ii) a small JavaScript library to
be embedded into the website that tracks the user data and reports
them to the survey platform, and (iii) Excel scripts based on generic
regular expressions to analyze the collected data. We present two
validation studies demonstrating consistent data collection in a
laboratory and a realistic, crowdsourced setting.

2 RELATEDWORK
The provision of toolkits that expand the existing repertoire of
researchers falls into the categories of “constructive research” [31]
and “code as a contribution” [13]. There are several examples where
such toolkits have contributed significantly to scientific research
in the HCI domain and beyond (e.g., AWARE [11], psiTurk [17],
oTree [7]). To benefit other researchers, toolkits must be evaluated
with adequate measures (e.g., demonstration, usage, or a technical
benchmark) [27].

Researchers who want to conduct controlled user interaction
studies typically employ surveys, experiments, or usability tests [26]
and need a collection of tools to present a stimulus (e.g., multiple
websites), collect data from users (e.g., via an online questionnaire)
and observe user behavior (e.g., via electronic notes). Stimuli can
range from purely visual design ideas with no user interaction to
clickable website prototypes with limited user interaction or fully
developed websites with multiple interlinked web pages. In the
context of websites, to capture user interaction, the user must be
monitored along a “visitor path” across multiple linked web pages

[19, 20]. A relatively simple tracking technique involves capturing
mouse clicks on specific areas of the stimulus (e.g., links clicked
on a website) or dwell time (e.g., time spent on a website before
visiting another one) [20]. More sophisticated tracking techniques
may involve recording mouse trajectories, keyboard inputs, or eye
movements (e.g., to generate visual heat maps) [1, 29].

Whereas in traditional controlled user interaction studies in the
lab (e.g., with students using lab computers), researchers have a
high level of control and can interact with the participants, con-
trolled online user interaction studies with crowdsourced subjects
using their own personal devices pose different challenges [12]. Es-
pecially in studies with many anonymous participants, researchers
have limited abilities to assist participants (e.g., to prevent input
mistakes). Researchers could easily handle procedures in the lab,
such as assigning a user to an experimental condition, conducting
an ex-ante survey (e.g., screening), asking a user to visit several
condition-specific websites, and conducting an ex-post survey (e.g.,
usability experience). However, in online settings, this would not
only be prone to error (e.g., users accidentally switching between
survey and stimulus windows on their device) but require software
development (e.g., keeping track of a specific user’s actions). To
create studies with a better user experience and a lower error sus-
ceptibility at a large scale, researchers would have to overcome
the technical disintegration of the required tools [19]. They would
have to develop software that neatly integrates surveying, stimulus
presentation, and behavior monitoring - at the price of reinventing
functionalities provided out of the box by existing web analytics
and survey tools.

Such requirements for controlled online user interaction stud-
ies also apply to other types of online studies. For example, some
cognitive-psychological experiments, such as the Stroop test [33],
require the precise measurement of stimulus presentation and reac-
tion times. Many tools exist that support researchers in conducting
these kinds of studies online and provide required timing precision
[6]. Some require programming skills, while others are even able to
be used by non-tech-savvy researchers (e.g., QRTEngine [5], Gorilla
[3]). However, the focus of their stimulus presentation is not on a
realistic “look and feel” of a website (e.g., on a mobile device) as in
user interaction studies, nor on a comprehensive assessment of user
behavior. Therefore, these tools can neither present the required
stimuli nor record the user interaction with them.

To conduct controlled online user interaction studies, one could
also consider versatile software frameworks for online studies such
as psiTurk [17] or oTree [7]; however, researchers would need to
have skills to develop the user interaction study in a programming
language such as Python. For HCI researchers that have previously
only used survey tools (e.g., Qualtrics) and have little to no pro-
gramming skills or do not have the ressources to invest time and
effort into software development, there is a hurdle to using these
tools.

3 INTRODUCING QBUTTERFLY
QButterfly provides a lightweight approach for controlled online
user interaction studies that requires no special programming skills;
it is published under the MIT license. Its preliminary version allows
embedding HTML pages in Qualtrics and LimeSurvey, recording



QButterfly: Lightweight Survey Extension for Online User Interaction Studies CHI ’23, April 23–28, 2023, Hamburg, Germany

Participant
Pool

(e.g. MTurk)

Participant
Data

Tracking 
Data

HTML Stimulus
Webpage(s) 

with embedded
QButterfly
JavaScript

Survey Server Any Webserver

User Study (based on 
QButterfly Template)

Questions

S
tu

dy
 F

lo
w

Stimulus Webpage 
Presentation

Questions

Existing Survey Functionality

Extention of Survey Functionality

Figure 2: QButterfly architecture

user clicks on the HTML elements, and directly storing them on
the survey platforms. Thanks to the integration, a) existing fea-
tures of the survey platforms can be used (e.g., question types,
random assignment to conditions), and participants do not have to
switch between different windows, b) it is not necessary to man-
ually match survey data and click data after the study (e.g., via IP
address as in [15]) and c) user click stream data can be analyzed in
real-time during the survey (e.g., to influence the survey flow based
on user clicks). For example, user ID matching would be required if
a survey platform is combined with a web analytics suite, such as
Matomo, to analyze clickstreams on the stimulus website. While
such a combination may seem more powerful because advanced
analytics features would be available in such cases, it is problem-
atic because matching user IDs across platforms requires technical
skills or is associated with a disadvantage for study participants
(e.g., they need to enter an identifier on the stimulus website that
needs to be stored). Using web analytics results to influence an
individual survey flow in real-time during a survey would be even
more complex to achieve for non-technical users.

Figure 2 shows the system architecture of QButterfly, while users
can be recruited from any participant pool (e.g., Prolific, MTurk).
The QButterfly template hosted in a Qualtrics or LimeSurvey envi-
ronment is used to set up online user studies (e.g., collect qualitative
feedback or conduct experiments). Features, such as the random
assignment of participants to different conditions and the design
of questions, take advantage of the easy-to-use survey platform
interface. The QButterfly survey template contains HTML and
JavaScript code that allows the user to display the stimulus web-
page(s) seamlessly in the survey. This can be as straightforward
as one or multiple static HTML web pages without server back-
end functionality. Furthermore, each webpage is enriched with the
QButterfly JavaScript library, which records the user clicks and
transfers them to the survey server. That means access to the web-
site is required, and user-interaction cannot be recorded on any
Internet website.

Figure 3 illustrates an exemplary study flowwith a simple between-
subjects design in Qualtrics using QButterfly. At the study’s begin-
ning, users consent to participate and are screened. Next, they are
randomly assigned to an experimental condition that contains a
particular survey question element. This unique question has three
purposes: (i) to display the website, (ii) to “listen” to user events
related to the website, and (iii) to record user events on the survey
platform.

Start study (e.g., consent, screening) 

Set condition to random value

Embedded variable: 
MyLink1 (09:14); MyLink2 (09:15); … 

Display website inside survey question

www.mywebsite.com/
treatment_{Treatment_Condition}.html

Continue (e.g., manipulations checks)

Figure 3: Illustrative survey flow on the survey platformwith
QButterfly

First, the question element can present a different website in
each condition. Technically, it contains the HTML code of an in-
line frame (iframe), a broadly-supported HTML element ([37]). An
iframe is used to visually embed one browser window (“child”)
within another browser window (“parent”). In the case of QButter-
fly, the stimulus website is embedded as a child window within the
survey’s parent window. During interaction with the website, the
surrounding Qualtrics elements (e.g., the button to go backward or
forward) can be disabled to avoid an unwanted interruption in the
website presentation. The termination of a specific user interaction
episode can either be triggered by a user event (i.e., a click on a par-
ticular element), or a pre-defined timer that automatically activates
survey elements or leads the participant to subsequent survey ques-
tions (e.g., manipulation checks, demographics). Second, the survey
question element contains JavaScript code that “listens” to events
in the child window. These events are generated by the QButterfly
JavaScript embedded in the stimulus website. The current version
of the JavaScript code can record clicks on HTML elements, such
as a hyperlink, together with a timestamp.

Third, the questions record the user events in an “embedded
field,” which can be accessed during the survey from within the
survey environment. For example, data stored in the embedded field
can be used to change the original survey flow or other questions.
Also, the embedded data is stored in the regular survey dataset as
additional variables and is thus readily accessible for data analysis.

4 CREATING AND ANALYZING A USER
INTERACTION STUDY

Our open-source software provides a user-friendly data collection
and analysis pipeline for creating controlled online user interaction
studies. A demonstration and all survey and code files are available
online, including detailed instructions on setting up the software
(github.com/QButterfly). First, researchers import the “Qualtrics
template” or “LimeSurvey template”, which implements a simple
user study including a stimulus website. They can conduct the

http://github.com/QButterfly


CHI ’23, April 23–28, 2023, Hamburg, Germany Ebert et al.

research and observe the recorded data through the survey plat-
form. The template also records a user’s browser properties (e.g.,
type, version, screen resolution) by default, which are necessary
parameters for pre-studies before entering the field. For example, it
might be required to check the properties of a user’s device (e.g.,
screen dimensions) for screen-out purposes or to adapt the stimulus
website accordingly. The following section describes the procedure
for using QButterfly based on the “Qualtrics template”. The proce-
dure for LimeSurvey is very similar and described in the GitHub
repository.

First, the embedded fields shown in Table 1 must be configured
on the survey platform. The only exception is the “eventStream”
field, which collects click stream data. Most importantly, the ad-
dress of the stimulus website(s) needs to be defined. Afterward, the
QButterfly JavaScript must be embedded into each webpage of the
website on which user behavior is tracked.

Figure 4 shows how the QButterfly JavaScript is embedded in the
code of a simplewebpage. To beginwith, the required library JQuery
is embedded (“jquery.min.js”). Next, “qbutterfly.js” is embedded as
this contains the address of the survey server as a parameter (e.g.,
https://abcd.qualtrics.com). This allows the stimulus websites to
send events to the survey server. Finally, the HTML element to be
tracked (e.g., an image, link, checkbox) is marked with an ID tag
with a unique name (e.g., MyLink). This is a simple hyperlink in
Figure 4. This ID later identifies the specific user action within the
events recorded in the “eventStream” field.

Events of a webpage are recorded in the “eventStream” field. Each
recorded event consists of a timestamp (ms since 01.01.1970 00:00:00
UTC) and an event ID (e.g., 1629802674592#MyLink). Events are
separated by the character “;”. An event with the webpage name is
generated when the first elements of a webpage begin to load, and
the user starts to see the webpage (. . . #ready_demo.html)1. A second
event is generated after all static page elements (e.g., images, CSS,
scripts) have been successfully loaded (. . . #load_demo.html). Addi-
tionally, each click on an element –whether previously definedwith
an ID or not – will generate an event (e.g., 1629802676308#MyLink,
1629802677000#Undefined).

To assure that the user can only see the webpage when it is fully
loaded and cannot interact with it beforehand, the code in Figure 5
can optionally be added. QButterfly will make the page visible only
after all static elements are loaded.

To analyze the recorded event data of a particular user or be-
tween users, the survey results can be exported from the survey
platform (e.g., csv, xlsx). QButterfly provides an Excel template
(“qbutterfly.xlsx”). This contains a set of “visual basic for applica-
tion” (VBA) macros for data analysis. The implemented functions
“countEvent”, “countEventPattern”, and “timestamp” shown in Table
2 allow us to identify specific events or event patterns and calcu-
late intervals between events. The functions are based on regular
expressions and can be combined with higher-level functions. For
example, given recorded event data in the Excel cell A1, the function
“=abs(timestamp(A1, “MyLink2”, 1) - timestamp(A1, “MyLink1”, 1))”

1QButterfly relies on the JQuery library to record all events. The first QButterfly event is
triggered when the page’s Document Object Model (DOM) is ready to manipulate. This
JQuery event is comparable to the DOMContentLoaded provided by most browsers.
The second event is generated when all page resources, including all images, are loaded.
This event listens to “window.onload” (for details, see https://api.jquery.com/ready/).

would return the interval (in ms) between the user’s first click on
MyLink1 and the first click on MyLink2.

5 SPECIAL CONSIDERATIONS FOR ONLINE
USE

As described in the section “Introducing QButterfly,” the overall
architecture is based on the survey platform and the stimulus web-
site. Therefore, the survey server and the website hosting must
be available during the study. For this reason, in situations with
many (concurrent) users accessing the stimulus website, availability
must be guaranteed by an appropriate configuration. If necessary,
performance testing must be carried out in advance.

Allowing participants to complete studies on their own devices,
rather than in a controlled lab setting, poses several challenges for
collecting reliable and precise tracking information (e.g., [28]). For
example, a user’s browser in the field could theoretically render
the stimulus material differently than the researcher expects be-
cause the user has a magnification function enabled or the screen
resolution is too small to display the complete website. Different
user devices with various performances could also lead to different
timing information. Like the survey platform, QButterfly requires
JavaScript to be enabled in the browser. However, users can dis-
able JavaScript in their browsers or block specific JavaScript codes,
such as cross-site JavaScript or iframes used by QButterfly. In the
context of online user studies, the most efficient way to mitigate
these potential problems is to conduct pre-studies to assess the
target population (e.g., typical screen dimensions, active blocker
extensions, and visual impairments).

6 VALIDATION OF THE SOFTWARE
We validated the software in two studies – a laboratory study and
a field study with crowdsourced subjects. The focus of the labo-
ratory study was to evaluate whether the tracking information
was valid and reliable. The field study investigated whether data
collection is reliable in a natural environment with a broad range
of devices, browsers, and individual settings. Before the two stud-
ies, the general compatibility of QButterfly with different devices
and browser combinations was tested. These were Windows 10
(Chrome, Edge, Firefox, Internet Explorer), macOS (Chrome, Safari),
Android (Chrome), and iOS (Chrome, Safari). Except for Internet
Explorer, it worked on all platforms (see “Limitations”).

6.1 Laboratory Study
6.1.1 Design. The goal of the laboratory study was to evaluate
whether a series of actions generated by a user is tracked correctly
in terms of the type and sequence of the recorded events and their
timestamps. Regarding the time information, an “adequate” ac-
curacy is sufficient as compared to to high and precise temporal
resolution that would be required in psychophysics experiments,
for instance (e.g., [2]). As an indication, web analytics tools, such as
Google Analytics, typically report timing information in seconds
instead of milliseconds [16]. An additional concern is that the time
a webpage takes to load is influenced by many factors, such as the
hosting service, the network connection to and from the server, the
complexity of the website (e.g., size, images, third-party content),



QButterfly: Lightweight Survey Extension for Online User Interaction Studies CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Embedded fields on the survey platform

Field Description
windowURL Address of stimulus website (e.g., https://www.mywebsite.com/index.HTML)
windowBorder Border size of stimulus website within survey window in pixels (e.g., “0” = no visible border)
windowHeight Height size of stimulus website within survey window in pixels (e.g., “640”)
windowWidth Width of stimulus website within survey window in pixels (e.g., “480”)
windowScroll Visible scrollbars of stimulus website within survey window (“yes” or “no”)
eventStream Chronological stream of tracking events of a user in the format “timestamp inms since 01.01.1970 00:00:00 UTC#Event_ID”

(e.g., 1630841029899#ready_demo.html; 1630841029900#load_demo.html; 1630841031050#MyLink;)
Note: The standard fields browser type, browser version, operating system, screen resolution, java support, and user
agent will also be collected by QButterfly

Table 2: Excel functions for the analysis of the event stream

Function Description
countEvent(Cell, Event_ID) Return the number of occurrences of a specific user event (e.g., MyLink) in an event stream.
countEventPattern(Cell, Event_ID_1, . . . ) Returns the number of occurrences of a specific sequence of user events (e.g., MyLink1,

MyLink2) in an event stream.
timestamp(Cell, Event_ID, occurrence) Returns the timestamp (ms since 01.01.1970 00:00:00 UTC) of the n-th occurrence of a specific

event in an event stream.

Figure 4: Code of an illustrative HTML page with a tracking script. The script is embedded in the header (1) and contains the
URL of the survey server (2). The page contains an example link to be tracked, which is identified via the ID "MyLink" (3).

1

2

3

Figure 5: Code to hide HTML page until all static elements
are loaded

<head>

<style>html { visibility:hidden; }</style>

...

</head>

and the performance of the client and the browser itself2. These
factors can lead to page load time variances in the range of seconds
(e.g., [21]). A website’s content can also be dynamically loaded even
after it has been successfully loaded for the first time. Therefore,
the interpretation of timing information is highly dependent on the
specific context.

We designed a simple study for the laboratory setting based
on the “QButterfly template” for Qualtrics that recorded the user
interaction. We chose a more straightforward approach instead of

2Concerning images, these problems can be addressed by pre-loading the images
before display [14]

using external devices to register stimuli and trigger events (e.g., a
BBTK photodiode and robotic actuator [6]) since we considered the
timing precision sufficient for our purposes. We hosted a realistic
stimulus with multiple linked webpages based on HTML, CSS, and
JavaScript (a fitness tracking website) on AmazonWeb Services and
simulated user interaction directly on the computer that showed the
stimulus. Two configurations based on the most popular browsers,
Chrome (95.0, Windows 10, Dell Latitude 1.9GHz i7, 16GB Ram)
and Safari (15.0, macOS Catalina, MacBook Air 1.8 GHz i5, 8GB
Ram) with default browser settings were selected. The interaction
pattern for the website consisted of six clicks over 27 seconds.

We developed a software bot with the Python programming
language to simulate user interaction using the “PyAutoGUI” pack-
age [32]. The package enables programmatic access to the mouse
and keyboard. Following its development, we ran the interaction
pattern a thousand times in both browsers, i.e., 2000 recorded user
patterns. For each individual user-initiated event within a pattern,
we calculated the delay between a click of the bot and its recog-
nition by QButterfly (“click time delay”). To get the relevant click
timepoint within the bot, we calculated the arithmetic mean of the
timepoint before and directly after the execution of the Python



CHI ’23, April 23–28, 2023, Hamburg, Germany Ebert et al.

Table 3: Summary of the delays (ms) between the automatic
click generated by the bot and the corresponding QButterfly
timestamp. The click time delay was calculated based on the
click events, and the dwell time delay was based on the time
between consecutive click events that brings the user from
one page to the other.

Click Time Delay (ms) Dwell Time Delay (ms)
Browser m SD 95% CI m SD 95% CI
Chrome (Win) 7.88 3.63 [7.66, 8.10] 4.39 3.46 [4.17, 4.60]
Safari (Mac) 20.23 1.62 [20.13, 20.33] 1.80 1.43 [1.71, 1.89]

Chrome Safari Chrome Safari

Figure 6: Box plots of the delays (ms) between the automatic
click using the Python bot and the corresponding QButterfly
timestamp. The click time delay (left) was calculated based
on the click events, and the dwell time delay (right) was cal-
culated based on the time between consecutive click events.

function to generate the click. As a proxy for dwell time, we further
calculated the intervals between two consecutive clicks that took
the user from one webpage to the next. Finally, we compared the
intervals between the bot and QButterfly (“dwell time delay”).

6.1.2 Results. QButterfly successfully recorded all user actions
generated by the bot, i.e., no event was missed, and no pattern
was recorded in another sequence than generated. Table 3 and
Figure 6 show the results for the two browsers. The mean delays
were generally below 21ms, with only a few outliers. Only one
outlier with more than four standard deviations from the mean
(15 milliseconds) was detected for the dwell time delay on Safari.
The QButterfly recordings were precise, with standard deviations
between 1.43 and 3.63 milliseconds. For the intended purpose of
enabling online user interaction studies with timings in the range
of seconds, this degree of temporal precision appears to be more
than sufficient.

6.2 Field Study
6.2.1 Design and Subjects. We performed a privacy-related HCI
experiment to monitor user behavior when confronted with differ-
ently designed cookie banners on websites. The purpose of cookie
banners is to inform users about the meaning of tracking and collect
consent. Minor design changes can significantly affect the decision
to accept or decline cookies [35]. The IRB of our university has
confirmed that no ethical approval was required, and informed con-
sent was obtained from all individual participants. This study was

Table 4: Computing system characteristics in the field study
(n = 6,045)

Browser OS
Chrome 71.1% Windows 73.3%
Firefox 10.0% Mac 24.5%
Safari 9.3% Linux 1.6%
Edge 8.5% ChromeOS 0.6%
Opera 1.1% Others 0.1%

limited to users with desktop computers, i.e., subjects with tablets
and smartphones were excluded because the website was designed
specifically for desktop screens. Users had to be UK residents, were
recruited from the online panel Prolific, and were paid for their
participation. We employed the “Qualtrics template” described ear-
lier. After consent and screening, we randomly assigned users to
different experimental conditions with other stimuli. Each website
presented a different type of cookie banner, and users could interact
with the banner and the website after accepting or declining the
use of cookies. We recorded page load events as well as user clicks.
At the end of the study, participants had to pass an attention check.
In total, n = 6,045 users completed the experiment, and each user’s
interaction pattern was analyzed. Subjects took a median time of
4.2 minutes to complete the study.

6.2.2 Results. Table 4 shows the characteristics of the subjects’
computers. As these were restricted to desktop computers only,
operating systems, such as Android or iOS, are not represented.
Subjects used a median browser window width of 1440 px (25th
percentile: 1366 px; 75th percentile: 1680 px) and height of 864 px
(25th percentile: 768 px; 75th percentile: 1050 px).

QButterfly worked reliably across the browser types and oper-
ating systems, and of the 6,045 recorded user interaction patterns,
only a few showed any idiosyncrasy (1.3%). Concretely, nineteen
respondents had no events recorded, and 59 recordings had invalid
time stamps for events (“undefined”). One of the affected users
provided qualitative feedback and mentioned using a blocking tool
for cross-site scripts3. This could explain why these idiosyncrasies
occurred in the first place. The remaining 5,967 recordings were
further checked for plausibility (e.g., chronological order of events,
missing events). We discovered 39 (0.6%) interaction patterns with
implausible event orders and ascertained that these particular user-
click events had not been recorded correctly. This could subse-
quently be traced back to a mistake in embedding the QButterfly
JavaScript library into the related web page’s HTML code. As a
result, we introduced a function in the JavaScript library to indi-
cate an incorrect embedding and updated the documentation on
the QButterfly website. Such experiences underline the general
importance of conducting pre-studies before using the library in
live studies to ensure full functionality in the field.

3Cross-site scripting is a form of attack where malicious scripts are injected in an
otherwise benign and trusted website (OWASP, n.d.). In the case of the QButterfly sys-
tem architecture, Qualtrics and the stimulus website have different internet addresses.
That is why the QButterfly JavaScript library embedded in the HTML website can
be misinterpreted as a malign cross-site script and blocked if the user has a blocker
installed.



QButterfly: Lightweight Survey Extension for Online User Interaction Studies CHI ’23, April 23–28, 2023, Hamburg, Germany

7 DISCUSSION
7.1 Contribution
QButterfly contributes to HCI research in the form of a validated,
ready-to-use toolkit and its open-source code (cp. [13, 27]). It has
been validated via a demonstration (qbutterfly.github.io), usage in
twoHCI-related studies ([8, 9]), and technical measurement (Section
6). The toolkit addresses several technical challenges researchers
have when they want to conduct controlled online user interaction
studies at scale [19]:

(1) The software may reduce authoring time and complexity
because it solves one major technical challenge, namely the
disintegration of required tools [19]. Therefore, it is easier
to design and evaluate new interactive systems at scale with
large, crowdsourced participant groups, which is a demand
of many HCI researchers [10, 12]. Researchers save time in
developing their study infrastructure and the data analysis
after their study.

(2) It may empower non-tech-savvy researchers to conduct user
interaction studies with limited programming skills without
being overwhelmed by existing toolkits (e.g., psiTurk [17]).
Also, behavioral researchers from other disciplines (e.g., on-
line marketing) might be enabled to conduct online studies
that would usually require rather sophisticated technical
skills [19].

(3) QButterfly may facilitate the re-use of existing functionality
as it is aligned with popular survey tools HCI researchers
use (i.e., Qualtrics, Limesurvey) and provides easy access
to a rich set of existing and evaluated functionalities and
knowledge (e.g., LimeSurveyMTurk integration). Survey and
experimental features such as scales, quotas, survey flow,
or random assignment of participants are available “off the
shelf” and "via click" in existing survey tools. Also, very
complex experiments with many conditions can be carried
out more quickly if these standard features can be used.

(4) The toolkit may facilitate the replication of ideas by provid-
ing access to a verified study infrastructure, which enables
the comparison among studies.

Scientific research has several advantages when researchers can
conduct studies more quickly and easily. Hypotheses and artifacts
can be investigated iteratively and at an earlier stage, which helps
to leave wrong paths sooner. In addition, less technology-savvy
researchers from other disciplines (e.g., marketing, consumer be-
havior, psychology) are more likely to participate in discussions if
the same tools are available.

7.2 Limitations and Future Work
The toolkit faces several challenges typical for online studies where
users use their own devices. Occasional idiosyncrasies (e.g., poor
internet connection or specific browser extensions blocking events)
can cause losses of tracking data, but our Excel functions automati-
cally identify these. However, our validation study (see “Validation
of the Software”) suggested that these issues only affect a small
fraction of trials. While we did not observe these exceptions in our
laboratory setup, about one percent of users and their tracking data

were affected when data were collected in an uncontrolled, crowd-
sourcing setting. In a conservative approach, these individuals can
be excluded from the study. Although our implementation appears
to perform reliably well across different browsers, it is incompati-
ble with Internet Explorer. In this case, users can proceed through
the questionnaire, but their tracking data are not recorded. How-
ever, the worldwide market share of Internet Explorer is steadily
declining and lies at about 2 percent in 2021 [22].

The default instantiation of QButterfly is highly dependent on
the survey platform, and the user influence on the future devel-
opment of the survey software is minimal. Therefore, changes in
the survey software could cause QButterfly to stop working and
require adjustments to the code. For example, incompatibility issues
led to the discontinuation of QRTEngine – software for running
online reaction time experiments using Qualtrics [5, 36]. We have
considered this by making the integration of QButterfly into the sur-
vey platform extremely lightweight. Instead of a dedicated, tightly
integrated program library, very little JavaScript code is included
in the survey template.

In studies using a user’s web browser, users can interact with
the displayed content and other browser elements. In the case of
QButterfly, users can press both the backward/forward navigation
button and the browser’s refresh button. Web developers cannot
fully mitigate these user actions and create additional “ready” and
“load” recorded events for the affected stimulus web pages. However,
QButterfly detects when a user presses the backward/forward navi-
gation buttons and immediately redirects the user to the current
page.

Future work could extend the features provided by QButterfly
in its current form. While it was developed with Qualtrics in mind,
the code could be readily adapted to other online survey platforms
or custom interfaces, provided they support custom JavaScript code
and event handling as well as the display of iframes. Furthermore,
the functions that handle the analysis of the tracking data can be
ported to a different environment (e.g., R, Python). Currently, they
are implemented in the proprietary software MS Excel in combina-
tion with a VBA script. However, they primarily execute regular
expressions to analyze events (e.g., the expression “[0-9]+#[^;]+;”
matches an event), which are easy to port to different environments.

The package currently only records user-generated keyboard or
mouse clicks because the QButterfly JavaScript library embedded
in the website only listens to these inputs. However, it can be
extended to listen to other browser event types and record those
as well (e.g., mouse trajectories generated by the “mousemove”
browser event). The toolkit can also be extended for user cases
requiring higher resolution timing. For example, best practices for
stimulus presentation on the web, such as preloading assets, can be
integrated [14].

7.3 Conclusion
Wepresent an open-sourceHCI toolkit (github.com/QButterfly) that
facilitates controlled online user interaction studies using the wide-
spread Qualtrics and LimeSurvey platforms. It helps to overcome
technical challenges that non-tech-savvy researchers typically face,
such as the disintegration of survey tools and stimulus material (e.g.,
a website) and reduces the authoring time for studies. Scientists

https://qbutterfly.github.io/
http://github.com/QButterfly


CHI ’23, April 23–28, 2023, Hamburg, Germany Ebert et al.

can rely on the existing functionality of their survey tools and only
need to add a JavaScript library to their stimulus website to track
a user’s clicks throughout their website. We empirically validated
the software in a laboratory and a field study and have used it in
two HCI studies.

ACKNOWLEDGMENTS
We would like to thank the Hasler Foundation and the DIZH initia-
tive of the Canton of Zurich for their financial support.

REFERENCES
[1] Gunes Acar, Steven Englehardt, and Arvind Narayanan. 2020. No boundaries:

data exfiltration by third parties embedded on web pages. Proc. Priv. Enhancing
Technol. 2020, 4 (2020), 220–238.

[2] Alexander Anwyl-Irvine, Edwin S. Dalmaijer, Nick Hodges, and Jo K. Evershed.
2021. Realistic precision and accuracy of online experiment platforms, web
browsers, and devices. Behavior Research Methods 53, 4 (Aug. 2021), 1407–1425.
https://doi.org/10.3758/s13428-020-01501-5

[3] Alexander L. Anwyl-Irvine, Jessica Massonnié, Adam Flitton, Natasha Kirkham,
and Jo K. Evershed. 2020. Gorilla in our midst: An online behavioral experiment
builder. Behavior Research Methods 52, 1 (Feb. 2020), 388–407. https://doi.org/10.
3758/s13428-019-01237-x

[4] Andres Baravalle and Vitaveska Lanfranchi. 2003. Remote Web usability testing.
Behavior Research Methods, Instruments, & Computers 35, 3 (Aug. 2003), 364–368.
https://doi.org/10.3758/BF03195512

[5] Jonathan S. Barnhoorn, Erwin Haasnoot, Bruno R. Bocanegra, and Henk van
Steenbergen. 2015. QRTEngine: An easy solution for running online reaction
time experiments using Qualtrics. Behavior Research Methods 47, 4 (Dec. 2015),
918–929. https://doi.org/10.3758/s13428-014-0530-7

[6] David Bridges, Alain Pitiot, Michael R. MacAskill, and Jonathan W. Peirce. 2020.
The timing mega-study: comparing a range of experiment generators, both lab-
based and online. PeerJ 8 (July 2020), e9414. https://doi.org/10.7717/peerj.9414
Publisher: PeerJ Inc..

[7] Daniel L Chen, Martin Schonger, and Chris Wickens. 2016. oTree—An open-
source platform for laboratory, online, and field experiments. Journal of Behav-
ioral and Experimental Finance 9 (2016), 88–97.

[8] Nico Ebert, Kurt A. Ackermann, and Angela Bearth. 2022. When information
security depends on font size: how the saliency of warnings affects protection
behavior. Journal of Risk Research 0, 0 (2022), 1–22. https://doi.org/10.1080/
13669877.2022.2142952

[9] Nico Ebert, Kurt Alexander Ackermann, and Björn Scheppler. 2021. Bolder is
Better: Raising User Awareness through Salient and Concise Privacy Notices. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 67, 12 pages. https://doi.org/10.1145/3411764.3445516

[10] Serge Egelman, Ed H. Chi, and Steven Dow. 2014. Crowdsourcing in HCI Research.
InWays of Knowing in HCI, Judith S. Olson andWendy A. Kellogg (Eds.). Springer
New York, New York, NY, 267–289. https://doi.org/10.1007/978-1-4939-0378-
8_11

[11] Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. 2015. AWARE: Mobile
Context Instrumentation Framework. Frontiers in ICT 2, 0 (2015), 1–9. https:
//doi.org/10.3389/fict.2015.00006

[12] Leah Findlater, Joan Zhang, Jon E. Froehlich, and KarynMoffatt. 2017. Differences
in Crowdsourced vs. Lab-Based Mobile and Desktop Input Performance Data. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 6813–6824. https://doi.org/10.1145/3025453.3025820

[13] James Fogarty. 2017. Code and contribution in interactive systems research. In
Workshop HCITools: Strategies and Best Practices for Designing, Evaluating and
Sharing Technical HCI Toolkits at CHI. Association for ComputingMachinery, New
York, NY, USA, 1–4. https://homes.cs.washington.edu/~jfogarty/publications/
workshop-chi2017-codeandcontribution.pdf

[14] Pablo Garaizar and Ulf-Dietrich Reips. 2019. Best practices: Two Web-browser-
based methods for stimulus presentation in behavioral experiments with high-
resolution timing requirements. Behavior Research Methods 51, 3 (June 2019),
1441–1453. https://doi.org/10.3758/s13428-018-1126-4

[15] Scott Goldstein. 2019. A Novel Technique for A/B Testing Using Static Prototypes.
Weave: Journal of Library User Experience 2, 1 (2019), 1–18. https://doi.org/10.
3998/weave.12535642.0002.101

[16] Google. 2021. Google Analytics Dashboard. Alphabet. Retrieved September 11,
2021 from https://analytics.google.com

[17] Todd M Gureckis, Jay Martin, John McDonnell, Alexander S Rich, Doug Markant,
Anna Coenen, David Halpern, Jessica B Hamrick, and Patricia Chan. 2016. psi-
Turk: An open-source framework for conducting replicable behavioral experi-
ments online. Behavior research methods 48, 3 (2016), 829–842.

[18] Layla Hasan, Anne Morris, and Steve Probets. 2009. Using Google Analytics to
Evaluate the Usability of E-Commerce Sites. In Human Centered Design, Masaaki
Kurosu (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 697–706.

[19] Matthias Hirth, Jason Jacques, Peter Rodgers, Ognjen Scekic, and Michael
Wybrow. 2017. Crowdsourcing Technology to Support Academic Research. In
Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments, Daniel
Archambault, Helen Purchase, and Tobias Hoßfeld (Eds.). Springer International
Publishing, Cham, 70–95.

[20] Bernard J. (Jim) Jansen. 2009. Understanding User-Web Interactions via Web
Analytics. Synthesis Lectures on Information Concepts, Retrieval, and Services
1, 1 (Jan. 2009), 1–102. https://doi.org/10.2200/S00191ED1V01Y200904ICR006
Publisher: Morgan & Claypool Publishers.

[21] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, Xiaojun Bi, and Samir R
Das. 2020. Modeling User-Centered Page Load Time for Smartphones. In 22nd
International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’20). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3379503.3403565

[22] Kinsta. 2021. Global Desktop Browser Market Share for 2021. Kinsta. Retrieved
2021-08-25 from https://kinsta.com/browser-market-share/

[23] Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing user studies
with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08). Association for Computing Machinery, New
York, NY, USA, 453–456. https://doi.org/10.1145/1357054.1357127

[24] Ron Kohavi and Roger Longbotham. 2007. Online Experiments: Lessons Learned.
Computer 40, 9 (Sept. 2007), 103–105. https://doi.org/10.1109/MC.2007.328 Con-
ference Name: Computer.

[25] Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and
A/B Testing. Encyclopedia of machine learning and data mining 7, 8 (2017),
922–929.

[26] Jonathan Lazar, JinjuanHeidi Feng, andHarryHochheiser. 2017. Researchmethods
in human-computer interaction (second edition ed.). Morgan Kaufmann, Boston.

[27] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[28] Maya B. Mathur and David B. Reichling. 2019. Open-source software for mouse-
tracking in Qualtrics to measure category competition. Behavior ResearchMethods
51, 5 (Oct. 2019), 1987–1997. https://doi.org/10.3758/s13428-019-01258-6

[29] Jakob Nielsen and Kara Pernice. 2009. Eyetracking Web Usability (1st ed.). New
Riders Publishing, USA.

[30] Optimizely. 2021. Unlock digital potential. Optimizely. Retrieved 2021-08-19
from https://www.optimizely.com

[31] Antti Oulasvirta and Kasper Hornbæk. 2016. HCI Research as Problem-Solving.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 4956–4967. https://doi.org/10.1145/2858036.2858283

[32] PyAutoGUI. 2021. Welcome to PyAutoGUI’s documentation! — PyAutoGUI docu-
mentation. PyAutoGUI. Retrieved 2021-10-28 from https://pyautogui.readthedocs.
io/en/latest/

[33] J Ridley Stroop. 1935. Studies of interference in serial verbal reactions. Journal
of experimental psychology 18, 6 (1935), 643.

[34] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Overlap-
ping experiment infrastructure: more, better, faster experimentation. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’10). Association for Computing Machinery, New York,
NY, USA, 17–26. https://doi.org/10.1145/1835804.1835810

[35] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
2019. (Un)informed Consent: Studying GDPR Consent Notices in the Field. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’19). Association for Computing Machinery, London, United
Kingdom, 973–990. https://doi.org/10.1145/3319535.3354212

[36] Henk van Steenbergen. 2021. QRTEngine An Easy Solution for Running Online
Reaction Time Experiments Using Qualtrics. QRTEngine. Retrieved 2021-08-25
from http://www.qrtengine.com/

[37] W3C. 2022. HTML iframe tag. W3C. Retrieved 2022-08-11 from https://www.
w3schools.com/tags/tag_iframe.ASP

https://doi.org/10.3758/s13428-020-01501-5
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/BF03195512
https://doi.org/10.3758/s13428-014-0530-7
https://doi.org/10.7717/peerj.9414
https://doi.org/10.1080/13669877.2022.2142952
https://doi.org/10.1080/13669877.2022.2142952
https://doi.org/10.1145/3411764.3445516
https://doi.org/10.1007/978-1-4939-0378-8_11
https://doi.org/10.1007/978-1-4939-0378-8_11
https://doi.org/10.3389/fict.2015.00006
https://doi.org/10.3389/fict.2015.00006
https://doi.org/10.1145/3025453.3025820
https://homes.cs.washington.edu/~jfogarty/publications/workshop-chi2017-codeandcontribution.pdf
https://homes.cs.washington.edu/~jfogarty/publications/workshop-chi2017-codeandcontribution.pdf
https://doi.org/10.3758/s13428-018-1126-4
https://doi.org/10.3998/weave.12535642.0002.101
https://doi.org/10.3998/weave.12535642.0002.101
https://analytics.google.com
https://doi.org/10.2200/S00191ED1V01Y200904ICR006
https://doi.org/10.1145/3379503.3403565
https://kinsta.com/browser-market-share/
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1109/MC.2007.328
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.3758/s13428-019-01258-6
https://www.optimizely.com
https://doi.org/10.1145/2858036.2858283
https://pyautogui.readthedocs.io/en/latest/
https://pyautogui.readthedocs.io/en/latest/
https://doi.org/10.1145/1835804.1835810
https://doi.org/10.1145/3319535.3354212
http://www.qrtengine.com/
https://www.w3schools.com/tags/tag_iframe.ASP
https://www.w3schools.com/tags/tag_iframe.ASP

	Abstract
	1 Introduction
	2 Related Work
	3 Introducing QButterfly
	4 Creating and Analyzing a user interaction Study
	5 Special Considerations for Online Use
	6 Validation of the Software
	6.1 Laboratory Study
	6.2 Field Study

	7 Discussion
	7.1 Contribution
	7.2 Limitations and Future Work
	7.3 Conclusion

	Acknowledgments
	References

