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Medical analytics for healthcare intelligence – Recent advances and future directions 

1. Introduction 

Recent advances in information technology have facilitated the 
massive collection of big data in numerous areas, including the health-
care sector. Healthcare data exists in various forms that can be briefly 
grouped into two categories. First, there is clinical data that is directly 
related to patients and medical conditions. This data includes, but is not 
limited to, demographic data, patient history, lab test results, physical 
examinations, diagnostic analysis and medical notes. The proliferation 
of wearable devices also enables the collection of clinical data periodi-
cally through monitoring systems via wireless technology, which sup-
ports the real-time tracking of patient care and timely adjustment of 
treatment plans. A second category of healthcare data originates from 
the business side of healthcare, such as operational and equipment costs, 
and logistic and administrative data which may be utilised for the 
optimisation of operational dynamics to support effective healthcare 
services and generally enhance utility in medical practice. 

With massive data readily available, there is an ongoing paradigm 
shift in every corner of healthcare, since there are unprecedented op-
portunities to analyse and extract useful information from diverse, 
distributed and heterogeneous data sources to make more informed 
clinical decision making and enhance the efficiency and performance of 
healthcare systems. Recent advances in machine learning and analytics 
can help reduce diagnostic and therapeutic errors that are inevitable in 
the human clinical practice, achieve consistency, improve the under-
standing of disease mechanisms and facilitate clinical decision support. 
It also transforms how medical research is conducted, and how health-
care is managed and delivered in a cost-effective manner. 

In response to the great potentials of analytics in healthcare, there is 
an abundance of global investment and academic initiatives to promote 
innovative and transformative research in health informatics in recent 
years. To name a few, in August 2015, the British Engineering and 
Physical Sciences Research Council (EPSRC) invited applications for 
Programme Grant proposals that seek to address significant major 
research challenges that align to the Healthcare Technologies Grand 
Challenges, where the use of data analytics and intelligent solutions 
were explicitly emphasised in the grand challenges of Developing Future 
Therapies, Optimising Treatment and Transforming Community Health 
and Care. Horizon 2020, the biggest EU Research and Innovation pro-
gramme, invested over €2 billion in better health for all during its first 
four years, encouraging the use of new technologies for data analytics 
and interpretation, such as artificial intelligence and computer model-
ling. In the U.S., the National Institutes of Health (NIH),the world’s 
largest public funder of biomedical research, invests more than $32 
billion a year to enhance life and reduce illness and disability; a number 

of programmes are directly related to medical analytics research, for 
example the Innovations in Biomedical Computational Science and 
Technology (R01) programme, where support is offered for fundamental 
research in biomedical informatics and in the development of novel 
computational tools and technologies. 

2. Summary of selected papers 

To embrace the challenges and opportunities in designing and 
deploying intelligent healthcare systems, this special issue aimed to 
encourage submissions of scientific findings from both academia and 
healthcare industry that present the fundamental theory, techniques, 
applications and practical experiences in the context of designing, 
implementing or evaluating analytics for healthcare intelligence. 
Among the 121 manuscripts we’ve received, 72 were desk rejected for 
being out of scope in general, and the remainings were sent for peer 
review, each with at least two reviewers. Eventually 15 papers were 
accepted for publication in the special issue, giving an acceptance rate of 
just above 10%. The accepted articles, summarised below, represent a 
broad spectrum of research for realizing the healthcare intelligence. 

Time is of the essence in many clinical domains, necessitating its 
modelling in decision support systems for such domains. Four contri-
butions of the Special Issue involve time considerations, namely the 
contributions by Bernardinia et al. [1], by Pokharel et al. [2], by Shifrin 
and Siegelmann [3] and by Bhatia et al. [4]. Bernardinia et al.’s work [1] 
deals with the domain of Type 2 Diabetes (T2D), where early prediction 
of a high risk for developing this life-threatening ailment is critically 
important. Their work is significant as it aims to improve current diag-
nostic practices that presently do not encompass the quantification of 
insulin resistance. Through the development of a predictive model based 
on a multiple instance learning boosting algorithm (MIL-Boost), they 
show that it is possible to accurately predict early the worsening of in-
sulin resistance (low vs high T2D risk) in terms of the 
Triglyceride-glucose (TyG) index. As the authors show, the proposed 
MIL-based approach is able to extract hidden patterns from past elec-
tronic health record (EHR) temporal data, even not directly exploiting 
triglycerides and glucose measurements. A key advantage of their 
method lies in its ability to model the temporal evolution of longitudinal 
EHR data while dealing with small sample size and variability in the 
observations (e.g., a small variable number of prescriptions for 
non-hospitalized patients). The proposed algorithm could form the basic 
component of a clinical decision support system. In working towards the 
management of diabetes, a personalised treatment scheme is proposed 
by Shifrin and Siegelmann [3] for patients with diabetes, which is based 
on a stochastic modelling of blood glucose level process and sta-tistical 
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learning of possible reactions to various treatment actions. In particular, 
the reaction to insulin treatment is formulated as a Markov decision 
process, which is then learned by reinforcement learning. The generated 
personalised insulin care policy is different from the widely accepted 
modern approaches that generally rely on the constant equally dosed 
basal treatment combined with bolus injections at mealtime. The new 
method, though not necessarily medically intuitive, is able to prevent 
hypoglycemia, minimise high glucose duration and glycemic fluctua-
tions, and automatically updates insulin management in response to 
personal or environmental change. 

Diabetes is also addressed by Bhatia et al. [4] who propose a 
home-centric Urine-based Diabetes (UbD) monitoring system, which 
allows to track UbD-related parameters in real-time using Internet of 
Things (IoT) sensors embedded across the toilet system. Temporal data 
can then be extracted which is further quantified into the Diabetes 
Infection Measure (DIM) over a fog computing platform. A Recurrent 
Neural Network is subsequently employed to predict the UbD infection 
based on DIM value and the corresponding temporal aspects, with re-
sults demonstrated through the self-organising mapping technique for 
enhanced visualisation efficacy. Validated over real-world data of four 
individuals, the experimental results outperform conventional systems 
in terms of temporal delay, classification efficiency, prediction effi-
ciency, reliability and stability analysis. 

The need to compute similarities between patients using information 
from EHRs, thus finding similar cases for a target patient case, arises in 
the context of many clinical tasks. EHRs invariably include longitudinal 
data and hierarchically organised information. In their contribution, 
Pokharel et al. [2] present a novel approach for computing patient 
similarities from EHRs, whose central feature is a temporal tree repre-
sentation; this is a temporal hierarchical representation based on tem-
poral co-occurrence and preserves the compound information found at 
different levels in the data. The temporal tree representation is 
augmented using the doc2vec embedding technique. Through their 
proposal they aim to address key challenges associated with EHR data, 
such as temporal aspects, multivariate, heterogeneous and irregular 
data, as well as data sparsity. The viability of their approach is empiri-
cally demonstrated, along with several state-of-the-art benchmarks, on a 
dataset of real world ICU EHRs, for the task of identifying patients with a 
specific target diagnosis. 

Radiology images are central to medical data. As Monshi et al. [5] 
report in their survey type contribution, substantial progress has been 
made towards implementing automated radiology reporting models 
based on deep learning (DL), where the generation of radiology coherent 
paragraphs that do more than traditional medical image annotation, or 
single sentence-based description, has been the subject of recent aca-
demic attention. This is a challenging, multi-disciplinary applica-
tion-based endeavour as it brings together neural networks, deep 
learning and natural language processing with the aim of bridging visual 
medical features and radiologist text. The authors’ expectation is that 
this area of research will grow in the near future. The presented survey, 
that constitutes a noteworthy addition to the literature for researchers 
interested in DL, particularly those interested in applying DL to radi-
ology reporting, focuses on the following critical challenges: under-
standing radiology text/image structures and datasets, applying DL 
algorithms (mainly CNN and RNN), generating radiology text, and 
improving existing DL based models and evaluation metrics. A critical 
discussion with future research recommendations gives the authors’ 
vision of the progress to come in this particular field of medical 
analytics. 

Knowledge discovery from omics data has become a common goal of 
current approaches to personalised cancer medicine and understanding 
cancer genotype and phenotype. With omics data characterised by high 
dimensionality and relatively small sample sizes with small signal-to- 
noise ratios, Alzubaidi et al. [6] propose a deep feature learning 
model based on a set of non-linear sparse Auto-Encoders that are 
deliberately constructed in an under-complete manner to detect a small 

proportion of molecules that can recover a large proportion of variations 
underlying the data This is followed by the introduction of a novel 
weight interpretation technique that helps to deconstruct the internal 
state of such deep learning models to reveal key determinants under-
lying its latent representations. Experiments reveal that the discovered 
biomarkers demonstrate computational and biological relevance, as 
well as the capability to construct highly accurate and reliable predic-
tion models. 

Early and accurate diagnosing Kawasaki Disease (KD), which is a 
leading cause of acquired heart disease in children, is impracticable for 
its unknown pathogenesis and the lack of pathognomonic features. 
Wang et al. [7] exploit incomplete and multi-source clinical data based 
on a cohort of 10,367 patients for the early assessment of KD. To address 
the data incompleteness that leads to group-based missing patterns 
associated with various clinical measures, the multi-source structure of 
clinical data is perceived using a matrix-based representation. A con-
volutional neural network is then employed to extract features and 
subsequently optimised to work with the multiway data, achieving su-
perior performance in comparison to popular benchmarks. 

Self-monitoring and behavioural modification are key to the suc-
cessful management of chronic health conditions. Dragoni et al. [8] 
present an AI system that receives input regarding a person’s food intake 
and, where unhealthy activity is detected, shows the user a natural 
language message explaining the wrong behaviour and its conse-
quences. The system applies symbolic AI techniques (ontologies and 
logical reasoning) to detect situations where personal behaviour de-
viates from desirable patterns. In such cases, the system applies 
persuasive explanation and natural language generation techniques to 
generate and deliver a message to the user. The evaluation included 
validation of the AI system’s outputs by domain experts; feedback on 
usability by users; and crucially, demonstration of reduced negative 
behaviour compared to a control group without AI intervention. 

Assessment of motor performance of patients after a stroke is 
important in determining proper therapy. At present, this assessment is 
carried out by clinicians based on a number of human-administered 
clinical scales. This approach depends on the clinician’s experience, 
and there is an element of variation of assessment. Zhou et al. [9] pro-
pose an assessment framework for persons after stroke via surface 
electromyography, based on four types of selected arm movements, with 
the aim of establishing a quantitative measure of stroke severity. The 
linear discriminant analysis (LDA), random forest algorithm (RF) and 
support vector machine (SVM) are adopted, trained and used for stroke 
patients quantitative recognition. Results are promising and suggest that 
the, currently predominant, qualitative assessment by experts can be 
complemented by quantitative assessment methods. 

Optical Coherence Tomography (OCT) is a rapidly developing non- 
invasive 3D imaging approach, which has been widely used in the ex-
amination of eye diseases. Owing to the potential speckle noise that may 
inherit from image acquisition process and thus obscure the anatomical 
structure, Yan et al. [10] propose a novel approach that utilises a 
multi-frame fusion mechanism by merging multiple scans for the same 
scene and then recovers missing signals in one pixel through movements 
of sub-pixels. Evaluated on 20 OCT volumes with 5120 images, the 
experimental results on multiple assessment metrics confirmed the 
effectiveness of the proposed method. This is followed by the evaluation 
of the speckle reduced images on the detection of the retinal layer 
boundaries acquired through deep neural networks, which improves the 
precision of the layer segmentation in comparison with state-of-the-art 
medical image enhancement methods. 

While working with data in the form of functional Magnetic Reso-
nance Imaging (fMRI), which is a non-invasive imaging technique for 
measuring brain activity, few analytical approaches simultaneously take 
into account the multivariate aspect and the connectivity features of the 
brain. Brahim and Farrugia [11] propose a novel multimodal analysis 
approach, which combines features extracted through Graph Fourier 
Transform (GFT) on a structural graph and several statistical metrics of 
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resting state fMRI (rs-fMRI) time series defined on the same brain re-
gions as the structural graph. Evaluated on the popular Autism Brain 
Imaging Data Exchange data set, the proposed approach demonstrates 
its superiority and efficiency, which beats those using functional con-
nectomes or complex functional network measures as features. 

Osteomyelitis (OM) is a serious bacterial infection in children 
requiring urgent antibiotic therapy. Wu et al. [12] develop a Bayesian 
Network (BN) model to guide individually targeted antibiotic therapy at 
point-of-care, by predicting the most likely causative pathogen in chil-
dren with OM and the antibiotic with optimal expected utility. The BN, 
which integrates data with critical expert knowledge under a causal 
inference framework, explicitly models the complex relationship be-
tween the unobserved infecting pathogen, observed culture results, and 
clinical and demographic variables. Experimental results demonstrate 
the strong agreement of antibiotic choices made by the proposed model 
and those of clinical experts, with BN-recommended antibiotics rated 
optimal or adequate by experts in 82 – 98% of 81 cases sampled from the 
tested cohort. 

The segmentation of brain Magnetic Resonance (MR) images facili-
tate the identification of homogeneous artefacts along with edges and 
textures. However, segmentation is typically complicated due to their 
inherent ambiguous structures and inhomogeneities in grayscale in-
tensities. Singh [13] proposes an adaptive image segmentation method, 
whereby the neutrosophic set theory and neutrosophic entropy infor-
mation (NEI) are used to measure uncertainties in MR images in terms of 
the neutosophic information such that the grey level at the location of 
maximum NEI value can be selected as the segmentation threshold. 
Validated through the segmentation of Parkinson’s disease MR images, 
the proposed method outperforms a number of existing well-known 
image segmentation approaches with fewer computational overheads. 

Sharing medical data across institutions is a common practice in 
collaborative clinical research that may involve complicated privacy 
preserving issues. Li et al. [14] propose a multicenter Random Forest 
(RF) prognosis prediction model that enables federated clinical data 
mining from horizontally partitioned datasets. This is supported with a 
novel data enhancement approach based on a differentially private 
generative adversarial network customised to clinical prognosis data, as 
well as an importance ranking step designed for feature selection 
without sharing patient-level information. Evaluated on colorectal 
cancer data from the US and China, experimental results demonstrate 
that the proposed multicenter RF can provide better prediction perfor-
mance in terms of discrimination and calibration ability than the cen-
trally trained RF model and popular centrally trained machine learning 
methods while following the privacypreserving rules in both groups. 

Last but not least, Xiang et al. [15] presents a status analysis on the 
investigation of differences in the attitudes and perceptions regarding 
the implementation of medical AI between healthcare workers and 
non-healthcare workers. An online questionnaire was designed to 
investigate the perceptions, receptivity and demands of general public 
on AI in medicine between October 13 and October 30, 2018, with a 
total number of 2780 participants from 22 provinces in China enrolled, 
among which healthcare workers accounted for 54.3%. Through 
descriptive statistics, high levels of receptivity (nearly 100%), demands 
(approximately 80%), and expectations (100%) were expressed among 
different age groups. There was a very large gap between current 
availability of and public demands for intelligence services, with over 
90% of healthcare workers having expressed a willingness to devote 
time to learning about AI and participating in AI research. While there is 
a strong demand for intelligent assistance in numerous areas, including 
imaging and pathology departments, outpatient services and surgery, 
such investigation of public opinions over the popularity and expecta-
tions of healthcare intelligence in practice could potentially inform the 
research direction and relevant resource allocation to the further 
advancement of medical analytics and artificial intelligence in medicine. 

3. Future directions 

Explainability, i.e. the ability to present and adequately justify the 
rationale behind decisions or recommendations, has always been a 
highly sought requirement for AI systems in the healthcare domain. Why 
are explanations important if a system can achieve high performance? 
The reason is simple and obvious: no medic or healthcare provider, who 
would ultimately be responsible for their actions towards patients, could 
take at face value the outcome of a computer-based system, no matter 
how much knowledge, expertise or intelligence is encoded in it. 
Explainability has an important added value too, as it can render AI 
systems able cognitive tutors to medical students, over and above to 
being competent problem solvers. Even in the early days of knowledge- 
based systems, explanations could range in type and form, from simple 
canned text to inference rule chains, to deeper causal explanations or 
meta-level strategic explanations, that could be dynamically adapted – 
in detail and concept significance – to the needs of different users. The 
technical challenges associated with the provision of explainable AI 
systems, in particular for medical domains, were not insignificant as it 
soon transpired that explanations impinge on the architectural backbone 
of these systems. Simply said, adequate and convincing explanations 
cannot be just added to an existing system, but should be designed as an 
intrinsic architectural feature from the start. The shift from knowledge- 
based to data-driven AI systems in medicine, that started two decades 
ago, has been getting stronger through the ever expanding availability of 
data coupled with the development of medical analytics for healthcare 
intelligence and high performances infrastructure. For a period of time, 
these developments overshadowed the importance of explainability. 
However, the need for transparency and interpretability in connection 
with the so called “black-box” approaches is recently coming more and 
more prominently into the AI arena. The re-acknowledgement of the 
importance of explainability is clearly evident through the emerging 
field of “Explainable AI” which is bringing back the previous challenges 
of explanation provision, but now rooted on data rather than knowl-
edge. Although there could be exceptions, such as image or signal pro-
cessing applications where high performance could be an adequate 
qualifier for entrance into the healthcare domain, generally-speaking 
the nature of healthcare, human life and well-being, may render 
black-box approaches untenable no matter how high their performance 
is. Explainability can unlock their potential as important healthcare 
tools by rendering them transparently interpretable. 

Undoubtedly, data and its harnessing through AI-based analytic 
methods with the objective of creating important tools, models and 
applications for the benefit of society is here to stay and grow stronger. 
The previous Keywords “Knowledge Society” and “Knowledge Econ-
omy” have now been rightly replaced by the terms “Data Society” and 
“Data Economy” to emphasise the central role that data has now ac-
quired. However, the fact that data is currently readily available and 
often in large sizes, does not necessarily mean that data is a panacea. 
Putting aside the technical challenges associated with data management 
and processing, data could also hide biases which if not detected and 
addressed by appropriate analytic methods would simply result in such 
biases being passed on and perpetuated by the generated models. 
Invariably, medical practice in some specific domains, as well as atti-
tudes in other sectors of human life, could be associated with certain 
biases against groups of society such as minority groups, gender groups, 
to the extent that it would not be a misnomer to refer to such practices as 
neither fully ethical nor socially inclusive. If medical analytics for 
healthcare intelligence is to serve the good of society at large, in an 
ethically accepted and inclusive manner, it should be in a position to 
unravel potential biases in the data and to ensure the inclusiveness and 
validity of the adopted data. This way, the new analytic models thus 
induced will surpass the limitations and biases of human practices, 
otherwise they will simply reproduce them. Rendering such models 
transparent and explainable can be catalytic in pruning a medical data 
bank from biases, misconceptions or even unethical practices. 
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A significant body of recent advances focuses on proposing models of 
high performance or demonstrating their competence over medical ex-
perts. However, there are still numerous gaps on integrating these ca-
pabilities into clinical practice, especially due to a lack of sufficient 
consideration in human machine interaction. Challenges in this area 
lie in various facets, ranging all the way from the cognitive willingness 
of attempting an AI system to integrating it seamlessly with medical 
practice. With clinicians likely to expect working with AI systems in the 
same way they work with fellow colleagues, having a friendly interface 
with associated performance summary statistics is far from enough to 
deploy AI systems into practical use. A lot more functionality is actually 
required, such as the demonstration of model expertise, bias and limi-
tations; the communication of confidence levels and inferences behind 
decisions delivered through an interpretable and transparent form; and 
even discourse functionality enabling humans and AI to debate ap-
proaches and results. Another barrier that hinders the human AI inter-
action is the de-skilling of medical personnel, who have to constantly 
keep up to date with, and adjust to the rapid evolution of AI and medical 
knowledge and technology, which is somehow in conflict with already 
overwhelmed workload, with some even fearing that they may even-
tually be replaced by AI. 

The enhancement of human AI interaction brings confidence and 
trust of healthcare professions in AI technology, which is vital to the 
adoption of AI systems. However, it must be recognised that the public 
acceptance is not yet high from numerous surveys, with major issues in 
areas such as data sharing and regulation that should be continuously 
improved upon to boost public trust. The hesitation towards data 
sharing lies in a lack of public trust on how the data is handled, stored 
and utilised, especially for purposes beyond their direct care; often the 
cause is poor communication between staff and patients on the benefits 
of data sharing, with staff members sometimes even unclear over their 
legal responsibilities, hence leading to poor engagement. This calls for 
the creation of a secure and transparent environment with clarity and 
visibility for the well-functioning of data-sharing ecosystem. However, it 
is inspiring to see advances made in recent years at the national scale, 
such as the approval of a cloud-based online medical imaging platform 
that assists the diagnosis of heart conditions by the US Food and Drugs 
Administration (FDA). With considerations in algorithms, models, 
training and selected features to deploy machine learning systems of 
analysing medical imaging, the FDA has assembled teams to oversee and 
anticipate future developments in AI-driven medical software. Although 
the AI algorithms currently play more the role of decision support tools, 
which aim to provide advice instead of making clinical decision 
replacing doctors, the public trust, safety and ethics will be an urgent 
concern to healthcare regulators for widespread deployment of AI in 
medical practice. 

Data analytics is usually associated with learning from big data, and 
has broadly been the main effort of machine learning research and 
practice in the past years. Recent advances in healthcare, for example 
using AI algorithms to interpret digital scans or brain images, rely on 
such methods. However, there are certain applications where learning 
from small data is essential. A first area of application in healthcare is 
the desire to derive locally adapted models. For example, one may wish 
to develop a risk assessment model for suicide tailored to a particular 
area to get better results: a local model will adapt better to the specific 
characteristics of the local population, and may consider local factors, 
such as referring and treating hospitals, as placeholders for underlying 
socioeconomic conditions that are not otherwise represented in the 
healthcare data. Secondly, it is not uncommon for biological datasets to 
contain fewer than 100 samples: as of March 2020, 74.6% of the 4348 
curated datasets provided by Gene Expression Omnibus count 20 or 
fewer samples. This is typical in rare cancers and diseases, in experi-
mental therapy treatments, and whenever the measurement costs are 
high. And thirdly, if we think of the Covid-19 pandemic that is ravaging 
the world at the time of writing, waiting until a sufficient data basis is 
established for big data approaches to work is not an option. Instead, it is 

essential to learn from the little data available, rerunning algorithms in 
regular intervals to reflect the increasing data basis and possible data 
drift. Such an approach to emerging pandemics enables a more accurate 
response on the basis of the limited data available at the time, but 
evolving as more data comes in. This approach also relies on the pos-
sibility of carrying out comprehensive data analyses with as little effort 
and time as possible; this relates to the emerging AutoML (automated 
machine learning) trend that seeks to add automation to the data 
analysis process. From a technical perspective, small-sample data pre-
sent particular statistical estimation challenges, as overfitting, over-
estimating and model selection difficulties are exacerbated. 

As we stated earlier, healthcare intelligence has come to rely mostly 
on the analysis of data through statistics and machine learning. How-
ever, we believe that it is important to further explore the combination 
of knowledge-based AI and machine learning. The biomedical domain is 
described by a number of relevant ontologies, and these resources, 
reflecting decades of medical knowledge, can play a crucial part in data 
analysis. For example, existing ontologies can be used a posteriori to 
provide explanations for insights derived through deep learning – we 
have discussed the importance of explainability earlier. Alternatively, 
existing ontologies may be used a priori to define parts of the layers and 
nodes in a deep learning network. In addition, ontologies and knowledge 
can play an important role in AutoML as well. They can be used to 
represent knowledge contained in the machine learning literature, as 
well as knowledge derived by experiences of senior data analysts, 
regarding the best way to design data analysis pipelines depending on 
(a) the application domain at hand, the type of data analysis problem, 
(c) the profile of available data and (d) preferences of users, e.g. in terms 
of explainability or speed of analysis. We expect that such knowledge 
will be at the heart of the most successful AutoML products for the 
healthcare domain. 
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